

Stantec Consulting Services Inc. 11687 Lebanon Road, Cincinnati, OH 45241

October 14, 2021 File: 175531033 Revision 0

Indiana-Kentucky Electric Corporation 3932 U.S. Route 23 P.O. Box 468 Piketon, Ohio 45661

RE: Periodic Safety Factor Assessment
West Boiler Slag Pond
EPA Coal Combustion Residuals (CCR) Rule
Clifty Creek Station
Madison, Jefferson County, Indiana

1.0 PURPOSE

This letter documents Stantec's certification of the safety factor assessment for the Indiana-Kentucky Electric Corporation (IKEC) Clifty Creek Station's West Boiler Slag Pond. The EPA CCR Rule requires a new certification to be performed on a five-year periodic interval under 40 CFR 257.73(f). The initial certification of the safety factor assessment was placed in the operating record in October 2016.

2.0 INITIAL SAFETY FACTOR ASSESSMENT

The initial safety factor assessment is attached. The assessment calculated factors of safety for the following loading conditions:

- Long-term, maximum storage pool,
- Maximum surcharge pool,
- Seismic / pseudo-static, and
- Liquefaction /post-earthquake.

Stantec compiled and reviewed available historical site, topographic, and geotechnical data for the West Boiler Slag Pond as part of the initial assessment. The critical sections were analyzed for the loading conditions specified in 40 CFR 257.73(e)(1)(i) through (iv). The results demonstrated that the West Boiler Slag Pond met the requirements for the initial safety factor assessment.

3.0 CURRENT SAFETY FACTOR ASSESSMENT

Stantec reviewed the result of the initial safety factor assessment and the changes in site conditions that have occurred in the past five years. The following operational changes and other factors were considered in this periodic assessment:

October 14, 2021 Page 2 of 3

Re: Periodic Safety Factor Assessment
West Boiler Slag Pond
EPA Coal Combustion Residuals (CCR) Rule
Clifty Creek Station
Madison, Jefferson County, Indiana

- 1. The West Boiler Slag Pond's operational pool is at El. 444.6 feet, below the modeled maximum stop log position of 457.7 feet. This improves the available storage capacity of the impoundment.
- 2. Cross-sectional geometry of the dam has not changed.
- 3. Annual and weekly inspections conducted since 2015 were reviewed as part of this assessment. There were no observations of deficiencies that would negatively affect the result of the safety factor assessment.
- 4. The Ohio River water level has remained unchanged.
- 5. Ground motion parameters were compared to the initial seismic assessment using the USGS website. The current parameters are representative of the initial seismic assessment.

Based on our review, there are no conditions that have changed in the past five years that would have a negative effect on the initial safety factor assessment.

4.0 SUMMARY OF FINDINGS

Based on a review of the initial safety factor assessment and the items listed in Section 3.0, the result of this periodic safety factor assessment is that the West Boiler Slag Pond at Clifty Creek Station meets the requirements of §257.73(e) of the EPA CCR Rule.

October 14, 2021 Page 3 of 3

Re:

Periodic Safety Factor Assessment

West Boiler Slag Pond

EPA Coal Combustion Residuals (CCR) Rule

Clifty Creek Station

Madison, Jefferson County, Indiana

5.0 QUALIFIED PROFESSIONAL ENGINEER CERTIFICATION

I, Jacqueline S. Harmon, being a Professional Engineer in good standing in the State of Indiana, do hereby certify, to the best of my knowledge, information, and belief:

- 1. that the information contained in this certification is prepared in accordance with the accepted practice of engineering,
- 2. that the information contained herein is accurate as of the date of my signature below, and
- 3. that the safety factor assessment for the IKEC Clifty Creek Station's West Boiler Slag Pond meets the requirements specified in 40 CFR 257.73(e).

SIGNATURE

ADDRESS:

Startec Consulting Services Inc.

11687 Lebanon Road Cincinnati, Ohio 45241

TELEPHONE:

(513) 842-8200

ATTACHMENTS: Clifty Creek Station West Boiler Slag Pond Initial Safety Factor Assessment

DATE 10/14/2021

Report of CCR Rule Stability Analyses AEP Clifty Creek Power Plant Boiler Slag Pond Dam and Landfill Runoff Collection Pond

Madison, Jefferson County, Indiana

Prepared for: American Electric Power Columbus, Ohio

Prepared by: Stantec Consulting Services Inc. Cincinnati, Ohio

Table of Contents

1.0	INTRODU	ICTION	1
2.0	GEOLOG	SY OF THE SITE	2
3.0		PLORATIONS AND SITE RECONNAISSANCE	
3.1		LAG POND DAM	
	3.1.1	2010 Geotechnical Exploration	
0.0	3.1.2	2015 CCR Mandate Site Reconnaissance	
3.2		L RUNOFF COLLECTION POND DAM	
	3.2.1	Previous Explorations	
	3.2.2 3.2.3	2009 Geotechnical Exploration	
		2015 Geotechnical Exploration	
	3.2.4	2013 CCR Mandate site Reconfidissance	3
4.0		OF EXPLORATIONS	
4.1		LAG POND DAM	
	4.1.1	2010 Geotechnical Exploration	
	4.1.1.1	Boring B-1	
	4.1.1.2	Boring B-2	
	4.1.1.3	Boring B-3	
	4.1.1.4	Boring B-4	
	4.1.1.5	Boring B-5	
	4.1.1.6 4.1.1.7	Boring B-6 Piezometers	
4.2		L RUNOFF COLLECTION POND	
4.2	4.2.1	2009 Geotechnical Exploration	
	4.2.1.1	Boring B-7	
	4.2.1.1	Boring B-8	
	4.2.1.3	Boring B-9	
	4.2.1.4	Boring B-10	
	4.2.2	2015 Geotechnical Exploration	
		'	
5.0		TORY TESTING	
5.1		LAG POND DAM	
	5.1.1	Consolidated-Undrained Triaxial Compression Testing	
	5.1.2	Permeability Testing	
	5.1.3	Moisture-Density Testing	
5.2	LANDFILI		
	5.2.1	Consolidated-Undrained Triaxial Testing	
	5.2.2	Permeability Testing	
	5.2.3	Moisture-Density Testing	15
6.0	ENGINEE	RING ANALYSIS	16

6.1	BOILER SI	AG POND DAM	16
	6.1.1	Engineering Analyses Performed in 2015 as Part of CCR	
		Mandate	
	6.1.1.1	Liquefaction Analysis	
	6.1.1.2	Seepage Analysis	
<i>(</i>)	6.1.1.3	Stability Analysis RUNOFF COLLECTION POND	
6.2	6.2.1	Engineering Analyses Performed in 2015 as Part of CCR	20
	0.2.1	Mandate	20
	6.2.1.1	Liquefaction Analysis	
	6.2.1.2	Seepage Analysis	
	6.2.1.3	Stability Analysis	
7.0	CONCLU	SIONS	25
7.0 7.1		FICATION	
7.1		ICATION	
, <u>, , , , , , , , , , , , , , , , , , </u>	OLIVEIO (E		20
8.0	REFERENC	CES	26
LIST O	F TABLES		
Table	1 Clifty	Creek Facility Geometry	2
Table		nary of Piezometer Elevations for the Boiler Slag Pond Dam	
Table		nary of CU Triaxial Compression Testing for the Boiler Slag Pond	
	Dam	, , , , , , , , , , , , , , , , , , ,	13
Table	4 Summ	nary of Permeability Testing for the Boiler Slag Pond Dam	13
Table	5 Summ	nary of Moisture-Density Testing for the Boiler Slag Pond Dam	14
Table		nary of CU Triaxial Compression Testing for the Landfill Runoff	
		ion Pond	
Table		nary of Permeability Testing for the Landfill Runoff Collection Pond	15
Table		nary of Moisture-Density Testing for the Landfill Runoff Collection	
.			16
Table		faction Factor of Safety for the Boiler Slag Pond Dam, CCR	17
Table	Manaa	tear Strength Parameters for CCR Mandate Review	17
Table		efaction Factor of Safety for the Boiler Slag Pond Dam, CCR	17
TUDIO	Manda	,	21
Table		ar Strength Parameters for CCR Mandate Review	
Table		mary of Computed Factors of Safety for the West Boiler Slag Pond	
	Dam, 2	015 CCR Mandate	24
Table	14 Sumi	mary of Computed Factors of Safety for the Landfill Runoff	
	Collect	ion Pond Dam, 2015 CCR Mandate	24

EXECUTIVE SUMMARY February 16, 2016

Executive Summary

The Clifty Creek Power Station's Boiler Slag Pond Dam, owned and operated by the Indiana and Kentucky Electric Corporation (IKEC), is located in the city of Madison, Indiana along the northern bank of the Ohio River. The Boiler Slag Pond currently serves as a settling facility for sluiced bottom ash produced at the plant. In addition to the process flows from the plant, approximately 510 acres drain to the facility. The pond is formed by natural grade to the north, east, and west; as well as a southern dike that runs along the bank of the Ohio River.

The Landfill Runoff Collection Pond serves as a collection pond for the Coal Combustion Byproducts Landfill. The pond is formed by natural grades to the north, east, and west; as well as a southern dam that runs along the bank of the Ohio River. The drainage area of the pond is approximately 443 acres. The Indiana Department of Natural Resources (IDNR) has designated this dam as No. 39-12, which was registered as a High Hazard Structure in 2010.

Stantec Consulting Services Inc. (Stantec) was contracted to perform a geotechnical exploration, stability analysis, and liquefaction assessment of the dike for these facilities in 2009 (Landfill Runoff Collection Pond) and in 2010 (Boiler Slag Pond Dam). The intent of the explorations was to develop subsurface data at cross-sections along the dike for the Boiler Slag Pond and the dam for the Landfill Collection Runoff Pond and to perform conventional seepage and stability analyses, assessing the performance of the facilities. The potential for liquefaction was to be evaluated according to simplified published methods. Reports from past geotechnical explorations were used to supplement subsurface data.

In response to the Coal Combustion Residual (CCR) rules mandated in the Federal Register on April 17, 2015, AEP contracted Stantec to perform stability analyses for the Boiler Slag Pond Dam and Landfill Runoff Collection Pond to estimate static, seismic, and liquefaction potential factors of safety. According to Section 257.73(e)(1)(i) through (iv), the factor of safety assessment CCR rules are:

- (i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.
- (ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.
- (iii) The calculated seismic factor of safety must equal or exceed 1.00
- (iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

EXECUTIVE SUMMARY February 16, 2016

The factors of safety obtained during the analyses for static and seismic load cases were greater than those required for Section 257.73 (e)(1)(i) through (iii). The average factor of safety for each soil horizon that was susceptible to liquefaction was greater than that required in Section 257.74 (e)(1)(iv).

The results of the 2010 analyses can be found in Section 6.1.1 for the Boiler Slag Pond Dam and Section 6.1.2 for the Landfill Runoff Collection Pond. The results of the 2015 CCR review can be found in Section 6.1.2 for the Boiler Slag Pond Dam and Section 6.2.2 for the Landfill Runoff Collection Pond.

INTRODUCTION February 16, 2016

1.0 INTRODUCTION

The Clifty Creek Power Station's Boiler Slag Pond Dam, owned and operated by the Indiana and Kentucky Electric Corporation (IKEC), is located in the city of Madison, Indiana along the northern bank of the Ohio River. The Boiler Slag Pond currently serves as a settling facility for sluiced bottom ash produced at the plant. In addition to the process flows from the plant, approximately 510 acres drain to the facility. The pond is formed by natural grade to the north, east, and west; as well as a southern dike that runs along the bank of the Ohio River.

The Landfill Runoff Collection Pond serves as a collection pond for the Coal Combustion Byproducts Landfill. The pond is formed by natural grades to the north, east, and west; as well as a southern dam that runs along the bank of the Ohio River. The drainage area of the pond is approximately 443 acres. The Indiana Department of Natural Resources (IDNR) has designated this dam as No. 39-12, which was registered as a High Hazard Structure in 2010.

Stantec Consulting Services Inc. (Stantec) was contracted to perform a geotechnical exploration, stability analysis, and liquefaction assessment of the dike for these facilities in 2009 (Landfill Runoff Collection Pond) and in 2010 (Boiler Slag Pond Dam). The intent of the explorations was to develop subsurface data at cross-sections along the dike for the Boiler Slag Pond and the dam for the Landfill Collection Runoff Pond and to perform conventional seepage and stability analyses, assessing the performance of the facilities. The potential for liquefaction was to be evaluated according to simplified published methods. Reports from past geotechnical explorations were used to supplement subsurface data.

In response to the Coal Combustion Residual (CCR) rules mandated in the Federal Register on April 17, 2015, AEP contracted Stantec to perform stability analyses for the Boiler Slag Pond Dam and Landfill Runoff Collection Pond to estimate static, seismic, and liquefaction potential factors of safety. According to Section 257.73(e)(1)(i) through (iv) of the CCR rules, the required factors of safety are as follows:

- (i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.
- (ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.
- (iii) The calculated seismic factor of safety must equal or exceed 1.00
- (iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

Table 1 summarizes the geometric characteristics of the embankments.

GEOLOGY OF THE SITE February 16, 2016

Table 1 Clifty Creek Facility Geometry

Facility Section	Height (feet)	Crest Width (feet)	Downstream Slope Grade	Upstream Slope Grade
Boiler Slag Pond Section A-A'	41	22	2.5H:1V*	1.75H:1V*
Boiler Slag Pond Section B-B'	31	30	2.5H:1V*	1.5H:1V*
Boiler Slag Pond Section C-C'	35	30	2H:1V*	2H:1V*
Landfill Runoff Collection Pond Section D-D'	61	20	2.5H:1V*	3H:1V*
Landfill Runoff Collection Pond Section E-E'	51	20	2.5H:1V*	4.5H:1V*

^{*}Denotes horizontal to vertical ratio

2.0 GEOLOGY OF THE SITE

The site lies within the Muscatatuck Regional Slope Physiographic Region of Indiana. This gently sloping plain is made of bedrock that is mostly Devonian in age that has been dissected by streams. Along the Ohio River the uplands immediately to the north are rugged and stand in bold relief to the flood plain. The reaches of each drainageway typically contain accumulations of silt, clay, and sand that make up the flat-lying flood plains. The site topography is steep to moderately sloping toward natural drainage channels. Topographic relief between Clifty Creek Power Plant and the uplands to the north is on the order of 350 feet.

Published soils information for the site was obtained from the <u>Soil Survey of Jefferson County</u>, <u>Indiana</u>, (US Department of Agriculture [USDA], Natural Resources Conservation Service [NRCS], 1985). The soil survey indicated the side slopes of Devil's Backbone and the ridge flanks to the north of the site belong to the Eden-Caneyville complex (EgG). These soils are found on steep to very steep slopes ranging from 25 to 60 percent. The Eden-Caneyville complex consists of moderately deep and well-drained soils that formed on slopes facing the Ohio River and on back slopes facing adjacent to tributaries near the river.

Mapping of unconsolidated sediments obtained from Regional Geologic Map, Louisville Sheet, Part B (Indiana Department of Natural Resources [IDNR], 1972) indicates the lowland areas adjacent to the Ohio River are predominantly underlain by clay, silt, sand, and gravel deposited as alluvium, lacustrine and outwash deposits. The glacial deposits in the area are of the Illinoian and Wisconsinan Quaternary age and belong to the Atherton Formation. The overlying more recent alluvial deposits belong to the Martinsville Formation.

FIELD EXPLORATIONS AND SITE RECONNAISSANCE February 16, 2016

The Atherton Formation consists of coarse- to fine-grained, well-sorted sediments that were deposited by glacial outwash (sand and gravel deposited by glacial meltwater streams), lake sediments and loess. The Martinsville Formation consists of alluvial sediments of non-glacial origin that have been deposited in modern flood plains along the major drainage ways. This formation varies in thickness from a few inches up to 30 feet near rivers.

Available geologic mapping from <u>Bedrock Geology of Indiana</u> (Indiana Geological Survey [IGS] Miscellaneous Map 48, IGS, 1987) shows the site to be underlain by bedrock of the Maquoketa Group. The Maquoketa Group in Indiana is a westward-thinning wedge, 1,000 feet thick in southeastern Indiana and 200 feet thick in northwestern Indiana. Overall, the group consists principally of shale (about 80 percent) and limestone (about 20 percent), although limestone is dominant in some areas. The lower part of the group is almost entirely shale, and the lower part of the shale is dark brown to nearly black. These rocks were deposited during the Upper Ordovician Period.

3.0 FIELD EXPLORATIONS AND SITE RECONNAISSANCE

The borings for the 2009 and 2010 geotechnical exploration were advanced using 3½-inch inside-diameter hollow-stem augers powered by a truck-mounted drill rig. Standard penetration tests (SPTs) were performed at 2.5-foot intervals in accordance with ASTM D 1586. Undisturbed Shelby tube samples were performed at selected intervals to obtain samples for consolidated-undrained (CU) triaxial compression (ASTM D 4767) and permeability testing (ASTM D 5084-90). Sample depths and recovery amounts are presented on the boring logs. Additionally, disturbed bag samples were collected from auger cuttings obtained from the boreholes.

A Stantec geotechnical engineer directed the drill crews, logged the subsurface materials encountered during the exploration and collected soil samples. During field logging, particular attention was given to each material's color, texture, moisture content, and consistency or relative density.

Following the field explorations, the Shelby tubes and bag samples were transported to Stantec's (or certified vendor's) laboratory for testing. Natural moisture content and unit weight testing were performed on samples extruded from the tubes. Testing consisting of sieve and hydrometer analyses (ASTM D 422) and Atterberg limits (ASTM D 4318) was performed on representative samples in order to classify the soil according the Unified Soil Classification System (USCS). Consolidated undrained triaxial compression tests (ASTM D 4767) and falling head permeability tests (ASTM D 5084) were also performed on Shelby tube samples. Standard Proctor moisture-density testing (ASTM D 698) was performed on disturbed soil bag samples collected from the auger cuttings.

FIELD EXPLORATIONS AND SITE RECONNAISSANCE February 16, 2016

3.1 BOILER SLAG POND DAM

3.1.1 2010 Geotechnical Exploration

Stantec advanced six borings at the dike of the Boiler Slag Pond Dam near the locations requested by AEP. The boring locations are shown in Appendix A. Borings B-1, B-3, and B-5 were positioned along the crest of the dike and Borings B-2, B-4, and B-6 were located along the downstream toe.

Upon completion of drilling, one-inch diameter standpipe piezometers were installed in four of the borings (Borings B-1, B-3, B-4, and B-5). In these, ten-foot long sections of polyvinyl chloride (PVC) well screen were placed in the borehole with the bottoms at approximate depths ranging from 30 to 40 feet. PVC riser tubing extended to the tops of the piezometers. Flush-mount well covers were installed along the crest of the dike (Borings B-1, B-3, and B-5) and an above-ground steel tube cover was used at the toe of the downstream slope (Boring B-4). Refer to Appendix C for piezometer installation details.

3.1.2 2015 CCR Mandate Site Reconnaissance

Representatives from Stantec visited the Boiler Slag Pond Dam for a site reconnaissance on August 25, 2015. The purpose of this visit was to confirm that physical conditions at the pond, such as geometry of the embankment, pool elevations, etc. had not changed since the completion of the analysis in 2010. The crest and exterior slopes of the pond were walked by Stantec personnel, while the interior slopes were observed from the crest. Evidence of alterations to the pond since 2010 were not observed during the reconnaissance.

3.2 LANDFILL RUNOFF COLLECTION POND DAM

3.2.1 Previous Explorations

Two historical exploration reports were used to develop subsurface profiles and engineering parameters for the onsite material. The <u>Fly Ash Dam Raising Feasibility Report</u> (AEP, 1985) was implemented to obtain geotechnical properties of the dams, dikes, and foundation material to perform a feasibility assessment of raising the dams by 30 feet. Approximately 22 borings with SPT sampling and 11 Cone Penetrometer Test (CPT) borings were performed for this study. This report was used to develop a subsurface profile of the dam and estimate soil properties and shear strength parameters.

The <u>Hydrogeologic Study Report</u> (Applied Geology and Environmental Science, Inc., 2006) summarized the piezometers and field permeability testing performed by various firms. This report was used to develop initial phreatic surfaces for the stability analyses, and the field

RESULTS OF EXPLORATIONS February 16, 2016

permeability testing data were reviewed to assist in selecting hydraulic conductivity values for soil horizons in the seepage analysis.

A review of the existing data by Stantec revealed a lack of laboratory testing necessary to develop drained (long-term) shear strength parameters. Standard Proctor moisture-density testing was recommended to compare with in-situ total unit weights to estimate the apparent degree of compaction used during construction. The review of the existing data resulted in the additional exploration explained in Section 3.2.2.

3.2.2 2009 Geotechnical Exploration

Stantec advanced four additional borings along the southern dam on November 11 and 19, 2009 to collect undisturbed Shelby tube and disturbed bag samples for laboratory testing. The boring locations are shown in Appendix A. Borings B-7 and B-9 were positioned along the crest of the dam, and Borings B-8 and B-10 were located along the downstream toe of the dam embankment. The borings were numbered in sequence with the six borings drilled at the Boiler Slag Pond Dam, also advanced late in 2009.

3.2.3 2015 Geotechnical Exploration

An additional boring (B-12) was advanced on July 6-7, 2015 to confirm subsurface conditions. This boring was placed on the crest of the dam, between the two cross-sections. The location of the boring can be seen on the site plan in Appendix A. Standard Penetration Test samples were collected at five-foot intervals. These samples were taken to a Stantec laboratory for natural moisture content, hydrometer analyses, and Atterberg limits testing.

3.2.4 2015 CCR Mandate Site Reconnaissance

Representatives from Stantec visited the Landfill Runoff Collection Pond for a site reconnaissance on August 25, 2015. The purpose of this visit was to confirm that physical conditions at the pond, such as geometry of the embankment, pool elevations, etc. had not changed since the completion of the analysis in 2010. The crest and exterior slopes of the pond were walked by Stantec personnel, while the interior slopes were observed from the crest. Evidence of alterations to the pond since 2010 were not observed during the reconnaissance.

4.0 RESULTS OF EXPLORATIONS

Logs of borings are provided in Appendix B and shown graphically on stability analysis cross sections in Appendix I for the 2009 and 2010 explorations. Results of natural moisture content tests and SPTs are provided on the logs adjacent to the appropriate sample. Summaries of engineering classification tests are provided in Appendix D.

RESULTS OF EXPLORATIONS February 16, 2016

4.1 BOILER SLAG POND DAM

4.1.1 2010 Geotechnical Exploration

4.1.1.1 Boring B-1

Boring B-1 was on the crest along cross-section A-A' of the Boiler Slag Pond Dam. The surface elevation of this boring was 473.4 feet.

Lean clay with sand was observed from the surface of the boring to a depth of 67.5 feet (Elevation 405.9 feet). From the surface of the boring to a depth of 37.5 feet (Elevation 435.9 feet), this material was described as light yellowish brown with light gray, damp to moist, and medium stiff to stiff. Natural moisture contents ranged from 15 to 23 percent and SPT N-values varied from 7 to 15 blows per foot (bpf). A liquid limit of 32 percent and a plasticity index of 13 percent were determined for a sample from this horizon. This sample was classified as CL, lean clay with sand, according to the Unified Soil Classification System (USCS) and A-6 (10) according to the Association of American State and Highway Transportation Officials (AASHTO) system. The average total unit weight of undisturbed samples was 131 pounds per cubic foot (pcf).

From a depth of 37.5 to 67.5 feet (Elevation 435.9 to 405.9 feet), the lean clay with sand was described as light yellowish brown with light gray, moist to wet, and very soft to medium stiff. Natural moisture contents ranged from 20 to 37 percent and SPT N-values varied from 2 to 7 blows per foot. A liquid limit of 28 percent and a plasticity index of 12 percent were determined for this soil. A Shelby tube sample yielded a total unit weight of 129 pounds per cubic foot. A representative sample from this layer classified as CL, lean clay with sand, according to the USCS and A-6 (8) according to the AASHTO system.

Bedrock, described as weathered gray shale, was encountered at a depth of 67.5 feet (Elevation 405.9 feet) and was augered to a boring termination depth of 71.5 feet (Elevation 401.9 feet). Groundwater was observed during the drilling at a depth of 40.0 feet (Elevation 433.4 feet) during drilling.

4.1.1.2 Boring B-2

Boring B-2 was advanced at the downstream toe along the same cross-section as Boring B-1 at a surface elevation of 444.0 feet.

From the surface of the boring to a depth of 51.5 feet (Elevation 392.5 feet), lean clay with sand was observed. The top 30 feet of this deposit was described as light yellowish brown with gray, moist to wet, and soft to very stiff. Moisture contents ranged from 17 to 32 percent and SPT N-values varied from 2 to 19 bpf, with an average of 7 blows per foot. The average total unit weight of the soil was 124 pounds per cubic foot.

RESULTS OF EXPLORATIONS February 16, 2016

The lower 21.5 feet of the lean clay with sand was described as gray, moist to wet, and soft to medium stiff. Natural moisture contents ranged from 25 to 35 percent and SPT N-values varied from 2 to 6 blows per foot. A liquid limit of 33 percent and plasticity index of 18 percent was determined for this material. A representative sample of this soil classified as CL, lean clay with sand according to the USCS and A-6 (13) according to the AASHTO system. Total unit weights of 117 and 121 pcf were determined for Shelby tube samples.

From a depth of 51.5 to 55.5 feet (Elevation 392.5 to 388.5 feet), well-graded gravel with silt and sand was observed. Bedrock was encountered below this material, described as shale, gray, hard, and medium bedded. Groundwater was observed at a depth of 22.5 feet (Elevation 421.5 feet) during drilling.

4.1.1.3 Boring B-3

Boring B-3 was positioned on the crest of the dike along cross-section B-B'. The surface elevation of the boring was 471.6 feet.

Lean clay with sand, described as light yellowish brown with light gray, was observed from the boring surface to a depth of 37.5 feet (Elevation 434.1 feet). The soil was further described as damp to moist and medium-stiff to very stiff. Moisture contents ranged from 15 to 22 percent and SPT N-values varied from 8 to 17 blows per foot. The average total unit weight was 131 pounds per cubic foot.

Gray lean clay with sand was observed below the upper soil horizon to the termination depth of 71.5 feet (Elevation 400.1 feet). This soil was described as moist and soft to very stiff. Moisture contents ranged from 20 to 40 percent and SPT N-values varied from 2 to 18 bpf, with an average of 6 blows per foot. The average total unit weight was 126 pounds per cubic foot.

Groundwater was observed at a depth of 40.0 feet (Elevation 431.6 feet) during drilling. Bedrock was not encountered.

4.1.1.4 Boring B-4

Boring B-4 was located along the downstream toe of the dike, downhill from Boring B-3, at a surface elevation of 444.0 feet.

Brown to dark gray lean clay with sand was observed from the surface of the boring to a depth of 15.0 feet (Elevation 429.0 feet). The soil was described as damp to moist and medium stiff to very stiff. Natural moisture contents ranged from 14 to 22 percent and SPT N-values varied from 7 to 16 blows per foot.

Gray lean clay with sand was encountered below the upper soil horizon to a depth of 57.5 feet (Elevation 386.5 feet) and was described as moist to wet and soft to stiff. Moisture contents

RESULTS OF EXPLORATIONS February 16, 2016

varied from 21 to 35 percent and SPT N-values varied from 3 to 9 blows per foot. A representative sample yielded a liquid limit of 25 percent and a plasticity index of 8 percent. This material classified as CL, lean clay with sand, according to the USCS and A-4 (4) according to the AASHTO system.

Underlying the lean clay with sand, well-graded gravel with silt and sand was observed to a termination depth of 71.5 feet (Elevation 372.5 feet). This material was described as gray, wet, and dense to very dense. Moisture contents ranged from 9 to 13 percent and SPT N-values varied from 39 to over 50 blows per foot. A representative sample of this material tested as non-plastic and classified as GW-GM, well-graded gravel with silt and sand, according to the USCS and A-1-a (1) according to the AASHTO system.

Bedrock was not encountered in the boring. Groundwater was observed at a depth of 22.5 feet (Elevation 421.5 feet) during drilling.

4.1.1.5 Boring B-5

Boring B-5 was advanced from the crest of the dike on cross-section C-C'. The surface elevation was 468.7 feet.

Lean clay with sand was observed from the surface of Boring B-5 to a depth of 40.0 feet (Elevation 428.7 feet). The soil was described as light yellowish brown with light gray, damp to moist, and medium stiff to very stiff. Natural moisture contents ranged from 15 to 25 percent and SPT N-values varied from 6 to 19 blows per foot. The average total unit weight of the soil was 128 pounds per cubic foot.

Additional lean clay with sand was encountered below the uppermost layer to a depth of 47.5 feet (Elevation 421.2 feet). This material was described as gray, moist to wet, and soft. Natural moisture contents ranged from 23 to 25 percent and SPT N-values varied between 3 and 4 blows per foot. The total unit weight was 119 pounds per cubic foot.

Below the lean clay with sand, sandy silt was observed to the termination depth of 71.5 feet (397.2 feet). The sandy silt was described as light yellowish brown to gray, wet, and soft to stiff. Moisture contents ranged from 22 to 30 and SPT N-values varied from 2 to 13 bpf, with an average of 7 blows per foot. A representative sample from this horizon tested as non-plastic and classified as ML, sandy silt, according to the USCS and A-4 (0) according to the AASHTO system.

Bedrock was not encountered in the boring. Groundwater was encountered at a depth of 45.0 feet (Elevation 423.7 feet) during drilling.

RESULTS OF EXPLORATIONS February 16, 2016

4.1.1.6 Boring B-6

Boring B-6 was advanced from a surface elevation of 445.5 feet near the southeast toe of slope below Boring B-5.

Lean clay with sand was encountered from the surface to a depth of 27.5 feet (Elevation 418.0 feet). This material was described as brown to gray, damp to moist, and very soft to very stiff. Natural moisture contents ranged from 16 to 32 percent and SPT N-values varied from 0 to 18 bpf, with an average of 6 blows per foot. The average total unit weight was 117 pounds per cubic foot.

Sandy silt was observed below the lean clay with sand to the boring termination depth of 71.5 feet (Elevation 374.0 feet). This soil was described as gray, moist to wet, and very soft to stiff. Moisture contents ranged from 27 to 40 percent and SPT N-values varied from 1 to 11 bpf, with an average of 5 blows per foot. The total unit weight was 117 pounds per cubic foot.

Bedrock was not encountered in the boring. Groundwater was observed at a depth of 30.0 feet (Elevation 415.5 feet) during drilling.

4.1.1.7 Piezometers

Piezometers were installed on the crest in Borings B-1, B-3, and B-5, and at the downstream toe in Boring B-4. Details of piezometers installations are shown in Appendix C. Ten-foot long piezometers screens were installed with the tips at approximate depths of 40 feet along the crest and 30 feet at the downstream toe of slope. Table 2 summarizes the installations and first two readings performed on the piezometers.

Table 2 Summary of Piezometer Elevations for the Boiler Slag Pond Dam

Boring No.	Top of Piezometer (feet)	Tip of Piezometer (feet)	Piezometric Reading on 11/13/09 (feet)	Piezometric Reading on 02/01/10 (feet)
B-1	473.4	433.4	434.2	434.1
B-3	471.8	431.6	440.6	434.6
B-4	446.7	414.0	430.7	428.5
B-5	469.0	428.7	434.9	430.4

RESULTS OF EXPLORATIONS February 16, 2016

4.2 LANDFILL RUNOFF COLLECTION POND

4.2.1 2009 Geotechnical Exploration

4.2.1.1 Boring B-7

Boring B-7 was advanced from the crest of the dam along cross-section D-D'. The surface elevation of the boring was 503.4 feet. Approximately 0.5 feet of asphalt pavement and gravel base was observed at the surface of the boring.

Below the pavement and gravel base, lean clay was observed to a boring termination depth of 29.0 feet (Elevation 474.4 feet). The lean clay was described as yellow and light gray, moist, and stiff. Three undisturbed Shelby tube samples were obtained from a depth of 23.0 to 29.0 feet (Elevation 480.4 to 474.4 feet). Natural moisture contents of those samples ranged from 18 to 24 percent, and total unit weights varied from 128 to 133 pounds per cubic foot. A representative sample yielded a liquid limit of 28 percent and a plasticity index of 8. This sample classified as CL, lean clay, according to the USCS and A-4 (7) according to the AASHTO system.

Neither bedrock nor groundwater was encountered during drilling.

4.2.1.2 Boring B-8

Boring B-8 was located at the toe of slope downstream of Boring B-7. The surface elevation of the boring was 441.5 feet. From the surface of the boring to a depth of 16.0 feet (Elevation 425.5 feet), the soil was visually described as yellow and light gray, damp to moist, silty clay.

Below the silty clay, lean clay was encountered to a depth of 29.0 feet (Elevation 412.5 feet). The lean clay was described as yellowish brown to light gray and moist. Two undisturbed Shelby tube samples were taken from this horizon at depths of between 25.0 and 29.0 feet (Elevation 416.5 to 412.5 feet). Natural moisture contents ranged from 24 to 27 percent, and total unit weights ranged from 124 to 130 pounds per cubic foot. A representative sample of this material yielded a liquid limit of 38 percent and a plasticity index of 17 percent. The sample classified as CL, lean clay according to the USCS and A-6 (15) according to the AASHTO system.

Soil described as lean clay with sand was observed beneath the lean clay to the boring termination depth of 31.0 feet (Elevation 410.5 feet). The lean clay with sand was further described as yellowish brown and light gray and moist. Shelby tube samples yielded moisture contents of 22 and 24 percent and total unit weights of 126 and 129 pounds per cubic foot. This soil had a liquid limit of 45 percent and a plasticity index of 25 percent. The soil classified as CL, lean clay with sand according to the USCS and A-7-6 (20) according to the AASHTO system.

Neither bedrock nor groundwater was encountered during drilling.

RESULTS OF EXPLORATIONS February 16, 2016

4.2.1.3 Boring B-9

Boring B-9 was advanced along the crest of cross-section E-E' at a surface elevation of 504.3 feet. Asphalt pavement and gravel base was observed at the surface of the boring to a depth of 0.5 feet.

Lean clay was encountered below the pavement to the boring termination depth of 22.0 feet (Elevation 482.3 feet). The lean clay was described as yellow to light gray and damp to moist. Three undisturbed Shelby tube samples were obtained from a depth of 16.0 to 22.0 feet (Elevation 488.3 to 482.3 feet). Natural moisture contents ranged from 17 to 23 percent, and total unit weights varied from 119 to 135 pounds per cubic foot. A sample of this material yielded a liquid limit of 39 percent and a plasticity index of 19 percent. This sample classified as CL, lean clay, according to the USCS and A-6 (17) according to the AASHTO system.

Neither bedrock nor groundwater was encountered during drilling.

4.2.1.4 Boring B-10

Boring B-10 was positioned near the toe below Boring B-9. The surface elevation was 457.3 feet.

Silty clay with sand was observed from the surface of the boring to a depth of 13.2 feet (Elevation 444.1 feet) and from a depth of 16.0 feet to the termination depth of 18.0 feet (Elevation 441.3 to 439.3 feet). This soil was described as yellow to light gray and damp to moist. Two undisturbed Shelby tube samples were taken and natural moisture contents ranged from 21 to 28 percent. Total unit weights of the samples ranged from 116 to 124 pounds per cubic foot. A representative sample of this material yielded a liquid limit of 28 percent and a plasticity index of 7 percent. The sample classified as CL-ML, silty clay with sand according to the USCS and A-4 (5) according to the AASHTO system.

From a depth of 13.2 to 16.0 feet (Elevation 444.1 to 441.3 feet) a layer of silty sand was encountered and describe as gray-brown and damp to moist. One Shelby tube sample was taken from this layer. A representative sample of this soil classified as non-plastic SM, silty sand, according to the USCS and A-2-4 (0) according to the AASHTO system.

4.2.2 2015 Geotechnical Exploration

Boring B-12 was advanced on the crest of the dam between the analysis cross-sections. The ground surface elevation of the boring was estimated to be 503.9 feet. A layer of asphalt with gravel base was encountered at the surface of the boring to a depth of 0.4 feet (Elevation 503.5 feet).

Beneath the asphalt and gravel base, lean clay with sand was encountered to a depth of 40.0 feet (Elevation 463.9 feet). This material was described as gray, damp, and medium stiff to stiff.

LABORATORY TESTING February 16, 2016

The natural moisture contents ranged from 18 to 28 percent and the SPT N-values varied from 7 to 15 blows per foot. The liquid limit of this material ranged from 31 to 43 percent and the plasticity index varied from 13 to 22 percent. The material classified as CL, lean clay with sand, according to the USCS and A-6 (7) or A-7-6 (15) according to the AASHTO system.

Silty clay with sand was observed beneath the lean clay with sand to a depth of 50.0 feet (Elevation 453.9 feet). This material was described as brown, moist, and medium stiff to very stiff. The natural moisture contents ranged from 16 to 19 percent and the SPT N-values varied from 8 to 16 blows per foot. A representative sample of this material yielded a liquid limit of 26 percent and a plasticity index of 7 percent. The material classified as CL-ML, silty clay with sand, according to the USCS and A-4 (4) according to the AASHTO system.

Cohesionless material was encountered beneath the silty clay with sand to the depth of 90.0 feet (Elevation 413.9 feet). This material was silt, silt with sand, silty sand, or sand; and was described as brown or gray, damp to wet, and loose to medium dense. The natural moisture contents ranged from 15 to 28 percent and the SPT N-values varied from 6 to 28 blows per foot. Samples from these materials tested as non-plastic. The material classified as ML (sandy silt, silt, or silt with sand) or SM (silty sand) according to the USCS and A-4 (0) according to the AASHTO system.

Beneath the cohesionless material, lean clay was encountered to the boring termination depth of 101.5 feet (402.4 feet). This material was described as gray, moist, and medium stiff to very stiff. The natural moisture content ranged from 23 to 27 percent and the SPT N-values varied from 8 to 19 blows per foot. A representative sample from this material yielded a liquid limit of 42 percent and a plasticity index of 23 percent. The sample classified as CL, lean clay, according to the USCS and A-7-6 (20) according to the AASHTO system.

5.0 LABORATORY TESTING

Laboratory tests in addition to the natural moisture content, classification tests, and unit weight tests mentioned in Section 4 were conducted on samples taken from the Boiler Slag Pond Dam (2010 Geotechnical Exploration) and Landfill Runoff Collection Pond (2009 Geotechnical Exploration). The results from the additional testing are summarized in the following sections.

5.1 BOILER SLAG POND DAM

5.1.1 Consolidated-Undrained Triaxial Compression Testing

Three consolidated-undrained (CU) triaxial compression tests were performed on undisturbed samples collected from the borings. These tests were performed in accordance with ASTM D

LABORATORY TESTING February 16, 2016

4767, and detailed results of the tests are provided in Appendix E. The samples were described as lean clay with sand. Table 3 shows a summary of the CU triaxial tests performed.

Table 3 Summary of CU Triaxial Compression Testing for the Boiler Slag Pond Dam

Boring Nos.	Depth (feet)	Soil Description	Material	Effective Cohesion, c' (psf)	Effective Angle of Internal Friction, φ' (deg.)
B-3, B-5	8.1 – 11.2	Lean Clay with Sand	Embankment	330	33.2
B-2, B-4	18.2 – 24.3	Lean Clay with Sand	Foundation	320	27.2
B-1, B-3	43.1 – 48.7	Lean Clay with Sand	Foundation	170	30.2

5.1.2 Permeability Testing

Four permeability tests (ASTM D 5084, Falling-Head, Method C, Rising Tailwater) were performed on undisturbed samples. Detailed data sheets showing the results of the tests are provided in Appendix F. Vertical hydraulic conductivities ranged from 8.7x10-9 to 1.6x10-6 centimeters per second. The samples were described as lean clay with sand. Table 4 summarizes the results of the permeability tests.

Table 4 Summary of Permeability Testing for the Boiler Slag Pond Dam

Boring No.	Depth, feet	Soil Description	Material	Vertical Hydraulic Conductivity, cm/second
B-1	16.1 – 16.6	Lean Clay with Sand	Embankment	1.44×10 ⁻⁷
B-2	42.6 – 43.1	Lean Clay with Sand	Foundation	8.70x10 ⁻⁹
B-4	7.6 – 8.1	Lean Clay with Sand	Embankment	1.58x10 ⁻⁶
B-6	17.6 – 18.1	Lean Clay with Sand	Foundation	2.01x10 ⁻⁷

5.1.3 Moisture-Density Testing

Three standard Proctor moisture-density tests (ASTM D 698) were performed on bag samples taken from auger cuttings. The data sheets for these tests are provided in Appendix G.

LABORATORY TESTING February 16, 2016

Maximum dry densities ranged from 113.0 to 117.4 pcf and optimum moisture contents varied from 13.4 to 15.8 percent. The samples were described as lean clay with sand. Table 5 summarizes the results of the tests.

Table 5 Summary of Moisture-Density Testing for the Boiler Slag Pond Dam

Boring No.	Depth, feet	Material	Soil Description	Maximum Dry Density, pcf	Optimum Moisture Content, %
B-1	5.0 +/- 2.0	Embankment	Lean Clay with Sand	117.4	13.4
B-5	7.5 +/- 2.0	Embankment	Lean Clay with Sand	113.0	15.8

These moisture-density tests were performed to compare with natural moisture contents and unit weights of the soils. Within the embankment soils, natural moisture contents ranged from 15 to 25 percent with an average of 19 percent. Dry densities of the embankment soil ranged from 106 to 115 pcf, with an average of 110 pounds per cubic foot. The results of these tests indicate that the average natural moisture content of the embankment soil is 3 to 5 percent above optimum moisture and that the average percent compaction of the embankment soil is on the order of 94 to 97 percent of the standard Proctor maximum density.

5.2 LANDFILL RUNOFF COLLECTION POND

5.2.1 Consolidated-Undrained Triaxial Testing

Four CU triaxial compression tests were performed on undisturbed samples collected from the borings. These tests were performed in accordance with ASTM D 4767, and detailed results of the tests are provided in Appendix E. The samples were described as lean clay, lean clay with sand, or sandy clay. Table 6 shows a summary of the CU triaxial tests performed.

LABORATORY TESTING February 16, 2016

Table 6 Summary of CU Triaxial Compression Testing for the Landfill Runoff Collection Pond

Boring No.	Depth (feet)	Soil Description	Material	Effective Cohesion, c' (psf)	Effective Angle of Internal Friction, ¢' (deg.)
B-7	25.8 – 29.0	Lean Clay	Embankment	430	29.3
B-8	25.8 – 30.9	Lean Clay with Sand	Foundation	410	28.0
B-9	17.4 – 21.4	Lean Clay	Embankment	360	25.7
B-10	13.4 – 18.0	Sandy Clay	Foundation	300	35.1

5.2.2 Permeability Testing

Four permeability tests (ASTM D 5084, Falling-Head, Method C, Rising Tailwater) were performed on undisturbed samples. Detailed data sheets showing the results of the tests are provided in Appendix F. Vertical hydraulic conductivities ranged from 3.4x10-8 to 1.4x10-7 centimeters per second. The samples were described as lean clay, lean clay with sand, or silt. Table 7 summarizes the results of the permeability tests.

Table 7 Summary of Permeability Testing for the Landfill Runoff Collection Pond

Boring No.	Depth, feet	Depth, feet Material Soil Description		Vertical Hydraulic Conductivity, cm/second
B-7	27.4 – 27.7	Embankment	Lean Clay	8.4x10 ⁻⁸
B-8	29.7 – 30.9	Foundation	Silt	3.4x10 ⁻⁸
B-9	18.3 – 18.9	Embankment	Lean Clay	6.2x10 ⁻⁸
B-10	16.4 – 16.7	Foundation	Lean Clay with Sand	1.4x10 ⁻⁷

5.2.3 Moisture-Density Testing

One standard Proctor moisture-density test (ASTM D 698) was performed on a bag sample of embankment soil taken from auger cuttings. The data sheet for this test is provided in Appendix

ENGINEERING ANALYSIS February 16, 2016

G. The maximum dry density was 110.6 pcf and the optimum moisture content was 16.9 percent. The sample was described as lean clay. Table 8 summarizes the results of the tests.

Table 8 Summary of Moisture-Density Testing for the Landfill Runoff Collection Pond

Boring	Depth,	h, Material		Maximum Dry Density,	Optimum Moisture
No.	feet		Soil Description	pcf	Content, %
B-7	7.0 +/- 2.0	Embankment	Lean Clay	110.6	16.9

The moisture-density test was performed to compare with in-situ natural moisture contents and unit weights of the soils. Within the embankment soils, natural moisture contents varied from 17 to 24 percent with an average of 20 percent. Dry densities of the embankment soil ranged from 99 to 114 pounds per cubic foot, with an average of 108 pounds per cubic foot. The results of these tests indicate that the average natural moisture content of the embankment soil is about 3 percent above optimum moisture and that the average percent compaction of the embankment soil is approximately 98 percent of the standard Proctor maximum density.

6.0 ENGINEERING ANALYSIS

6.1 BOILER SLAG POND DAM

Based on the review of available information, results of the geotechnical exploration and results of laboratory testing, Stantec performed engineering analyses of the Boiler Slag Pond Dam in 2010. This included liquefaction, seepage, and slope stability analysis of three cross sections. The procedures used and the results of the analyses are presented in the following paragraphs. The results of the liquefaction analysis are shown in Appendix H, and the cross section drawings showing the results of the seepage and stability analyses are provided in Appendix I. Appendix J provides an explanation of derivations of shear strength, seepage, and liquefaction analysis parameters.

6.1.1 Engineering Analyses Performed in 2015 as Part of CCR Mandate

6.1.1.1 Liquefaction Analysis

The liquefaction analysis conducted in 2010 was revisited as part of the CCR Mandate. The details for this analysis are contained in Appendix H. Similar to the analysis performed in 2010, a screening process was used to determine if the cohesive material encountered in the borings has the potential for liquefaction. The screening process was conducted for four samples which had liquid limits below 37 percent. According to the Seed et al and Bray and Sancio plots

ENGINEERING ANALYSIS February 16, 2016

supplied in Appendix H, one sample could be labeled as susceptible to liquefaction and another could be labeled as moderately susceptible to liquefaction.

The remaining cohesionless material encountered in the critical cross-sections was tested for liquefaction as a coarse–grained analysis similar to the one conducted in 2010. According to the CCR Mandate, for dikes constructed of soils that have a susceptibility to liquefaction, the calculated factor of safety must equal or exceed 1.20. Test data from Borings B-1 and B-2, representative of cross-section A-A', Boring Nos. B-3 and B-4, representative of cross-section B-B', and B-5 and B-6, representative of cross-section C-C' was used. Soil characteristics (grain size, plasticity, etc.) from SPT and Shelby tube samples were summarized to assess liquefaction potential. The copies of the spreadsheets used for the calculations appear in Appendix H and provide the soil, test data, and calculations used in the assessment.

It was assumed during the screening process for potential liquefaction that the steady-state water elevation consistent with that developed during the stability analysis would be used as the groundwater elevation. Unsaturated soils above this elevation were considered not liquefiable. Also the dike embankment materials, consisting of engineered fill, were not considered liquefiable.

Factors of safety against liquefaction were estimated for soil layers predicted to be potentially liquefiable during the screening process. As a result of recent industry publications that attempted to update certain correlations that had larger uncertainty that are used in the calculations for the factor of safety, slight differences in the factors of safety were obtained than those reported in 2010. Inputs such as depth, material properties, seismic accelerations, etc. have not been altered. Ranges and averages of these factors of safety for the potentially liquefiable soil layers are summarized in Table 9.

Table 9 Liquefaction Factor of Safety for the Boiler Slag Pond Dam, CCR Mandate

Boring No.	Depth (feet)	Elevation (feet)	Unified Soil Classification	Liquefaction FS, Range	Liquefaction FS, Average
B-2	51.5 – 56.0	392.5 – 388.0	GW-GM	10.00	10.00
B-4	57.5 – 71.5	386.5 – 372.5	GW-GM	10.00	10.00
B-5	47.5 – 71.5	421.2 – 397.2	ML	1.60 – 3.52	2.41
B-6	27.5 – 71.5	418.0 – 374.0	ML	1.08 – 2.64	1.73

The range of factors of safety for each soil horizon represents factors of safety calculated from each individual corrected N-value at that specific depth and overburden pressure. Due to the variable and somewhat unreliable nature associated with the SPT, it is recommended that the

ENGINEERING ANALYSIS February 16, 2016

liquefaction factors of safety be evaluated according to the average values shown in Table 9. The average liquefaction factors of safety against liquefaction ranged from 1.73 to 10.00 and are considered acceptable.

6.1.1.2 Seepage Analysis

The seepage analysis conducted in 2010 was reviewed as part of the CCR Mandate. The seepage models used in the SEEP/W product were calibrated to recent piezometric data and visual field operations. Changes to the material properties developed in Appendix J of this report were not deemed necessary.

The 2010 analysis used a normal pool elevation of 442 feet to establish the piezometric line. During the 2015 site reconnaissance with AEP personnel, it was learned that the normal pool elevation is currently 448 feet and is not expected to change. As a result, a piezometric line has been adjusted for the current normal pool elevation of 448 feet, and has been used during the CCR Mandate review. The seepage analysis conducted at the critical cross-sections of A-A', B-B', and C-C' were reviewed.

The results of the seepage analysis were used to revise the stability cross-sections.

6.1.1.3 Stability Analysis

The stability analysis conducted in 2010 was reviewed as part of the CCR Mandate, using the results of the seepage analysis review in Section 6.1.1.2. Similar to 2010, SLOPE/W was the software used during the analysis. The drained shear strength parameters developed in 2010, located in Appendix J, were maintained for the updated analysis. Undrained shear strength parameters were not derived in 2010. These parameters were determined by CU test data for the Embankment Fill and Lean Clay with Sand. Undrained shear strength parameters for cohesionless materials were taken to be identical to the drained shear strength parameters.

Table 10 summarizes the drained and undrained shear strength parameters used in the analysis.

ENGINEERING ANALYSIS February 16, 2016

Table 10 Shear Strength Parameters for CCR Mandate Review

			ed Shear engths	Undrained Shear Strengths	
Material	Unit Weight (pcf)	φ' (deg.)	Effective Cohesion (psf)	φ (deg.)	Cohesion (psf)
Embankment	130	33.2	165	13	600
Lean Clay with Sand	119	27.2	160	5	1,200
Gravel with Silt and Sand	130	35	0	35	0
Bottom Ash	115	28	0	28	0
Silty Sand	130	30	0	30	0

The upstream and downstream slopes of each cross-section were analyzed, incorporating the auto locate and entry/exit search routines to locate the critical slip surface. Once the potential failure surface with the lowest factor of safety was identified, the optimization routine was run.

When the surface slope is composed of a material with low effective cohesion, an infinite slope failure (shallow sliding parallel to the surface) will be critical. A minimum failure depth of ten feet was specified for each section, to eliminate the evaluation of surficial sloughing and erosional types of instability.

For this review, SLOPE/W was used to investigate one normal pool elevation, considered the maximum steady-state pool, and one PMF pool elevation:

- Current normal pool level of 448 feet.
- 50 Percent PMF pool level of 468.4 feet, applied as a steady-state load condition within SLOPE/W.

Using the drained and undrained strength parameters listed in Table 10, the existing dam was analyzed at the three critical cross sections selected for the CCR review. The undrained materials strengths were used in the seismic analyses.

A summary of the factors of safety are presented in Table 13 at the end of this section and printouts of the GeoStudio runs are presented in Appendix I.

ENGINEERING ANALYSIS February 16, 2016

6.2 LANDFILL RUNOFF COLLECTION POND

Based on the review of available information, results of geotechnical exploration and results of laboratory testing, Stantec performed engineering analyses of the Landfill Runoff Collection Pond in 2009. This included liquefaction, seepage, and slope stability analysis of two cross sections. The procedures used and the results of the analyses are presented in the following paragraphs. The results of the liquefaction analysis are shown in Appendix H, and the cross section drawings showing the results of the seepage and stability analyses are provided in Appendix I. Appendix J provides an explanation of derivations of shear strength, seepage, and liquefaction analysis parameters.

6.2.1 Engineering Analyses Performed in 2015 as Part of CCR Mandate

6.2.1.1 Liquefaction Analysis

The liquefaction analysis conducted in 2010 as part of the 2009 geotechnical exploration was revisited as part of the CCR Mandate. The details for this analysis are contained in Appendix H. Similar to the analysis performed in 2010, a screening process was used to determine if the cohesive material encountered in the borings has the potential for liquefaction. The screening process was conducted for nine samples, four of which had liquid limits below 37 percent. According to the Seed et al and Bray and Sancio plots supplied in Appendix H, none of the samples are considered susceptible to liquefaction.

The remaining cohesionless material encountered in the critical cross-sections was tested for liquefaction as a coarse–grained analysis similar to the one conducted in 2010. According to the CCR Mandate, for dikes constructed of soils that have a susceptibility to liquefaction, the calculated factor of safety must equal or exceed 1.20. Test data from historic Borings SS2-1 and SS2-4, representative of cross-section D-D' and historic Borings SI-1, SS3-1, and SS3-4, representative of cross-section E-E', were used. Soil characteristics (grain size, plasticity, etc.) from SPT and Shelby tube samples were summarized to assess liquefaction potential. The copies of the spreadsheets used for the calculations appear in Appendix H and provide the soil, test data, and calculations used in the assessment.

It was assumed during the screening process for potential liquefaction that the steady-state water elevation consistent with that developed during the stability analysis would be used as the groundwater elevation. Unsaturated soils above this elevation were considered not liquefiable. Also the dike embankment materials, consisting of engineered fill, were not considered liquefiable.

Factors of safety against liquefaction were estimated for soil layers predicted to be potentially liquefiable during the screening process. As a result of recent industry publications that attempted to update certain correlations that had larger uncertainty that are used in the

ENGINEERING ANALYSIS February 16, 2016

calculations for the factor of safety, slight differences in the factors of safety were obtained than those reported in 2010. Inputs such as depth, material properties, seismic accelerations, etc. have not been altered. Ranges and averages of these factors of safety for the potentially liquefiable soil layers are summarized in Table 11.

Table 11 Liquefaction Factor of Safety for the Boiler Slag Pond Dam, CCR Mandate

Boring No.	Depth (feet)	Elevation (feet)	Unified Soil Classification	Liquefaction FS, Range	Liquefaction FS, Average
SI-1	14.0 – 26.0	442.6 – 430.6	ML	2.06 – 2.40	2.23
SI-1	26.0 – 36.0	430.6 – 420.6	SC	10.00	10.00
SI-1	36.0 – 41.0	420.6 – 415.6	SM	5.02	5.02
SI-1	41.0 – 79.5	415.6 – 377.1	ML	2.08 - 10.00*	4.87
SS2-1	61.0 – 66.0	443.5 – 438.5	ML	6.22	6.22
SS2-1	71.0 – 86.0	443.5 – 418.5	SM	2.41 – 10.00	6.31
SS2-4	16.0 – 21.0	423.8 – 418.8	SM	3.29	3.29
SS2-4	61.0 – 64.0	388.8 – 385.8	GC	3.50	3.50
SS3-1	36.0 – 46.0	468.5 – 458.5	ML	3.36 – 4.92	4.14
SS3-1	46.0 – 51.0	458.5 – 453.5	SP	5.34	5.34
SS3-1	51.0 – 56.0	453.5 – 448.5	SC	10.00	10.00
SS3-1	56.0 – 66.0	448.5 – 438.5	SP	3.28 – 3.84	3.56
SS3-1	66.0 – 71.0	438.5 – 433.5	SM	5.03	5.03
SS3-1	71.0 – 86.0	433.5 – 418.5	SP	2.93 – 10.00	6.25
SS3-1	86.0 – 96.0	418.5 – 408.5	SM	5.53 – 6.09	5.81
SS4-1	41.0 – 46.0	464.6 – 459.6	ML	3.28	3.28
SS4-1	46.0 – 66.0	459.6 – 439.6	SM	2.32 – 4.51	3.60
SS4-1	71.0 – 76.0	434.6 – 429.6	SC	1.83	1.83
SS4-1	76.0 – 94.0	429.6 – 411.6	ML	4.01 – 6.30	5.62

^{*}Typical range is 2.08 - 2.93, typical average is 3.16

ENGINEERING ANALYSIS February 16, 2016

6.2.1.2 Seepage Analysis

The seepage analysis conducted in 2010 as a part of the 2009 geotechnical exploration was reviewed as part of the CCR Mandate. The seepage models used in the SEEP/W product were calibrated to recent piezometric data and visual field operations. Changes to the material properties developed in Appendix J of this report and the piezometric lines developed were not deemed necessary. The seepage analysis conducted at the critical cross-sections of D-D' and E-E' were reviewed.

The results of the seepage analysis were used to revise the stability cross-sections.

6.2.1.3 Stability Analysis

The stability analysis conducted in 2010 was reviewed as part of the CCR Mandate, using the results of the seepage analysis review in Section 6.2.1.2. Similar to 2010, SLOPE/W was the software used during the analysis. The drained shear strength parameters developed in 2010, located in Appendix J, were maintained for the updated analysis. Undrained shear strength parameters were not derived in 2010. These parameters were determined by CU test data for the Embankment and Lean Clay with Sand. The undrained shear strength parameters for the silty clay with sand layer were taken from established typical value tables. Undrained shear strength parameters for cohesionless materials were taken to be identical to the drained shear strength parameters.

Table 12 summarizes the drained and undrained shear strength parameters used in the analysis.

Table 12 Shear Strength Parameters for CCR Mandate Review

			Drained Shear Strengths		Undrained Shear Strengths		
Material	Unit Weight (pcf)	φ' (deg.)	Effective Cohesion (psf)	φ (deg.)	Cohesion (psf)		
Embankment	129	27.5	198	21	1,400		
Lean Clay with Sand	127	28	206	17	1,200		
Sandy Silt	125	30	0	30	0		
Silty Sand	94	30	0	30	0		
Clayey Gravel with Sand	130	35	0	35	0		
Fly Ash	115	25	0	25	0		
Silty Clay with Sand	118	34	152	20	1,000		

ENGINEERING ANALYSIS February 16, 2016

The upstream and downstream slopes of each cross-section were analyzed, incorporating the auto locate and entry/exit search routines to locate the critical slip surface. Once the potential failure surface with the lowest factor of safety was identified, the optimization routine was run.

When the surface slope is composed of a material with low effective cohesion, an infinite slope failure (shallow sliding parallel to the surface) will be critical. Failure was defined as any slip surface that begins in the crest with a reasonable depth of failure. A minimum failure depth was specified for each section, to eliminate the evaluation of surficial sloughing and erosional types of instability.

For this review, SLOPE/W was used to investigate one normal pool elevation and one PMF pool elevation:

- Current normal pool level of 485 feet.
- PMF pool level of 501.4 feet, applied as a surcharge load within SLOPE/W.

Using the drained and undrained strength parameters listed in Table 12, the existing dam was analyzed at the three critical cross sections selected for the CCR review. The undrained shear strength parameters were used in the seismic analyses.

A summary of the factors of safety are presented in Table 14 at the end of this section and printouts of the GeoStudio runs are presented in Appendix I.

ENGINEERING ANALYSIS February 16, 2016

Table 13 Summary of Computed Factors of Safety for the West Boiler Slag Pond Dam, 2015 CCR Mandate

						Factor of Safety		
Headwater Pool	Drainage	Incipient Motion	Seismic Load Case	Acceptance Criteria	A-A'	B-B'	C-C'	
Normal Pool Elevation (448 feet)		Downstream	- No	1.50	2.30	2.44	2.30	
Normal Pool Elevation (448 feet)	- Drained	Upstream		1.50	1.88	1.63	2.73	
50% PMF Elevation(462.8 feet)		Downstream		1.40	2.30	2.44	2.18	
50% PMF Elevation (462.8 feet)		Upstream		1.40	2.13	1.95	3.88	
Normal Pool Elevation (448 feet)	Undrained	Downstream	Yes	1.00	1.35	1.30	1.53	
Normal Pool Elevation (448 feet)		Upstream		1.00	1.34	1.30	2.25	

Table 14 Summary of Computed Factors of Safety for the Landfill Runoff Collection Pond Dam, 2015 CCR Mandate

						Factor of Safety	
Headwater Pool	Drainage	Incipient Motion	Seismic Load Case	Acceptance Criteria	D-D'	E-E'	
Normal Pool Elevation (485 feet)	Drained	Downstream	No	1.50	1.85	1.99	
Normal Pool Elevation (485 feet)		Upstream		1.50	2.73	3.51	
PMF Elevation Surcharge (501.4 feet)	Didiried	Downstream		1.40	1.81	1.99	
PMF Elevation Surcharge (501.4 feet)		Upstream		1.40	3.47	4.51	
Normal Pool Elevation (485 feet)	Undrained	Downstream	Yes	1.00	1.42	1.64	
Normal Pool Elevation (485 feet)		Upstream		1.00	1.94	2.28	

February 16, 2016

7.0 CONCLUSIONS

7.1 PE CERTIFICATION

I, Stan Harris, being a Professional Engineer in good standing in the State of Indiana, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this certification is prepared in accordance with the accepted practice of engineering. I certify that pursuant to 40 CFR 257.73(e)(2), the safety factor assessment for the AEP Clifty Creek Power Plant's Boiler Slag Pond Dam and Landfill Runoff Collection Pond demonstrates compliance with the factors of safety specified in 40 CFR 257.73(e)(1)(i) through (iv).

SIGNATURE

ADDRESS:

Stantec Consulting Services Inc.

11687 Lebanon Road

Cincinnati, Ohio 45241-2012

TELEPHONE:

(513) 842-8200

7.2 GENERAL

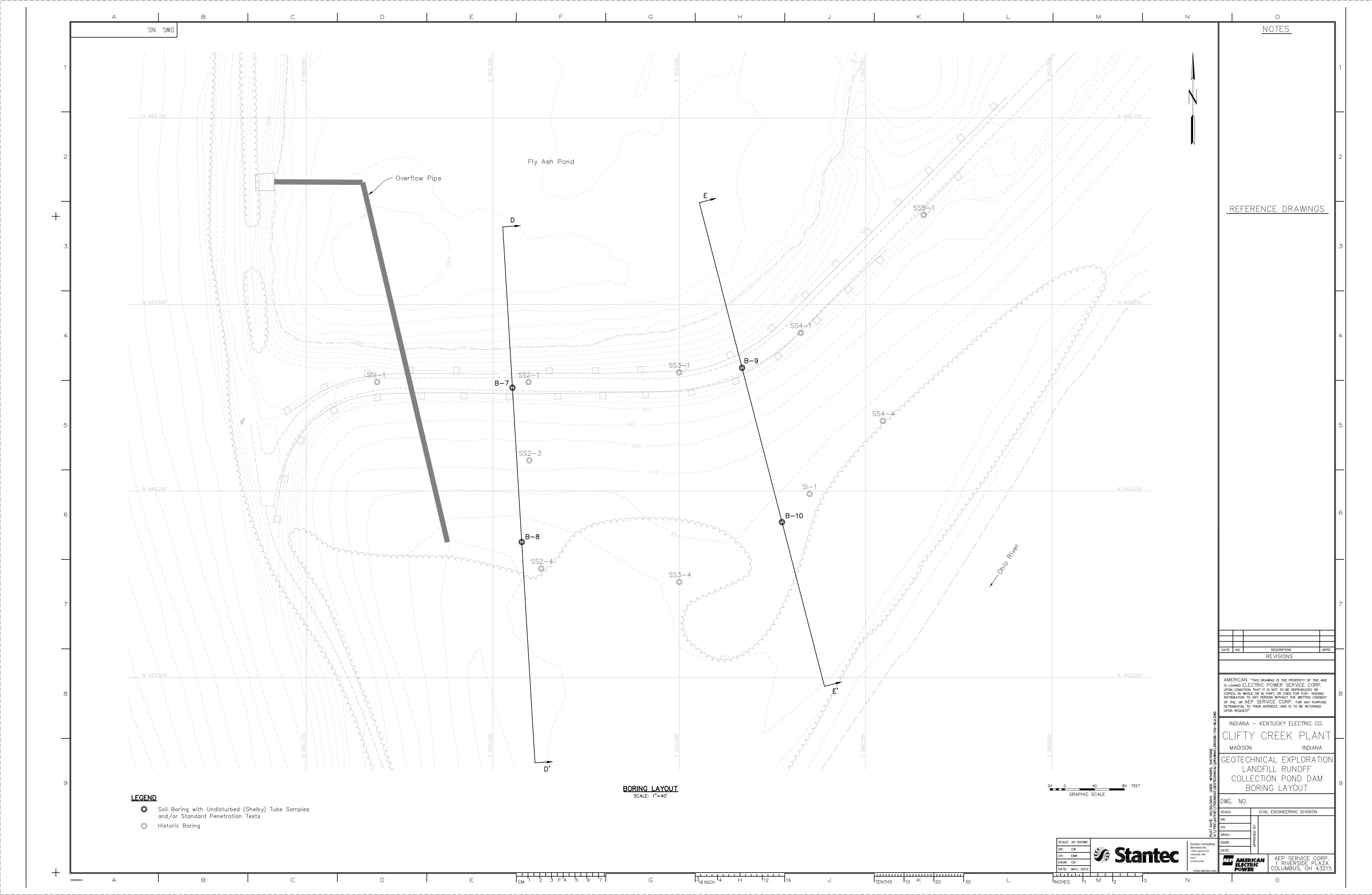
The analyses presented herein are based on information gathered (from various sources) using that degree of care and skill ordinarily exercised under similar circumstances by competent members of the engineering profession. Subsurface profiles are generally based on straight-line interpolation between borings and no warranties can be made regarding the continuity of subsurface conditions between the borings.

The boring logs and related information presented in this report depict approximate subsurface conditions only at the specific boring locations noted and at the time of drilling. Conditions at other locations may differ from those occurring at the boring locations. This report may not be applicable if the facility is modified from what is described in this report or if the site conditions are altered. This report may require updating to reflect the different, modified facility specifics and/or the altered site conditions.

REFERENCES February 16, 2016

8.0 REFERENCES


- Stantec, <u>Report of Geotechnical Exploration</u>, <u>AEP Clifty Creek Power Landfill Runoff</u> <u>Collection Pond</u>, May 2010
- 2. Stantec, Report of Geotechnical Exploration, AEP Clifty Creek Power West Bottom Ash Pond, May 2010
- 3. Stantec, <u>Reservoir Routing Analysis Landfill Runoff Collection Ash Pond Report</u>, February 2010
- 4. Applied Geology and Environmental Sciences, Inc (AGES), "<u>Hydrogeologic Study Report, Clifty Creek Coal Ash Landfill, Clifty Creek Station,</u>" Report Date: November, 2006
- 5. ASCE, <u>Foundation Engineering Handbook</u>, <u>Design and Construction with the 2006</u> <u>International Building Code</u>, Robert W. Day, 2005
- Earthquake Engineering Research Center, <u>Recent Advances in Soils Liquefaction</u> <u>Engineering: A Unified and Consistent Framework</u>, R.B. Seed, K.O. Cetin, R.E.S Moss, A.M. Kammerer, J. Wu, J.M. Pestana, M.F. Riemer, R.B. Sancio, J.D. Bray, R.E. Kayen, A. Faris, 2003
- 7. USACE, EM 1110-2-1902 Engineering and Design Slope Stability, 2003
- 8. Indiana Department of Natural Resources, <u>General Guidelines for New Dams and</u> <u>Improvements to Existing Dams in Indiana</u>, 2001
- 9. Virginia Polytechnic Institute and State University, Virginia Tech Center For Geotechnical Practice and Research, <u>Performance and Use of the Standard Penetration Test in Geotechnical Engineering Practice</u> October 1998
- 10. NAVFAC DM 7.2 <u>NAVFAC DM7-02 Foundations and Earth Structures, Table 1: Typical Properties of Compacted Soils</u> (Page 39) September 1986
- 11. Indiana-Kentucky Electric Corporation, (IKEC), "<u>Flyash Dam Raising Feasibility Report, Clifty Creek Plant</u>," Report Date: January 31, 1985
- 12. US Department of the Interior, Bureau of Reclamation, <u>Design of Small Dams</u>, Second Edition, 1973


APPENDIX A

SITE PLANS

APPENDIX B

BORING LOGS

Project No	umber	175539022			Location	W	est Cres	t: West Pon	d Dam
Project Na	ame	AEP Clifty Creek /	Ash Ponds		Boring No.	B-1		Total Dept	h71.5 ft
County	_	Jefferson, IN			Surface Ele	vation	47	3.4 ft	
Project Ty	уре	Geotechnical Explo	oration		Date Started	d1	1/3/09	Completed	11/4/09
Superviso	or	C. Nisingizwe Dr	iller M. Wet	hington	Depth to Wa	ater 40	0.0 ft	Date/Time	11/4/09
Logged B	Ву	C. Nisingizwe			Depth to Wa	ater 3	9.2 ft	Date/Time	11/13/09
Lithology	ıy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
473.4'	0.0'	Top of Hole							
- - - -		Lean Clay With Sayellowish brown w gray, damp to moi medium stiff to ve Fill	vith light st,	SPT-1	2.5 - 4.0 5.0 - 6.5	1.2	6-5-6 5-5-5	17 15	N = 11 - N = 10 - N = 10
- -				ST-3	7.5 - 9.5	2.0		23	- -
-				SPT-4	10.0 - 11.5	0.4	1-5-5	21	N = 10
- - -				SPT-5	12.5 - 14.0	1.3	2-2-5	17	N = 7
- - -				ST-6	15.0 - 17.0	2.0		20	- - -
-				SPT-7	17.5 - 19.0	1.5	5-6-9	19	N = 15
- - -				SPT-8	20.0 - 21.5	1.5	3-5-10	15	N = 15
- -				SPT-9	22.5 - 24.0	1.5	3-7-7	17	N = 14
_ _ 2				SPT-10	25.0 - 26.5	1.2	3-3-5	17	N = 8
				SPT-11	27.5 - 29.0	1.3	3-4-8	20	N = 12
				SPT-12	30.0 - 31.5	1.4	4-4-7	19	N = 11
-				SPT-13	32.5 - 34.0	1.3	2-4-5	18	N = 9
- 425 0	27 51			SPT-14	35.0 - 36.5	1.1	2-5-5	17	N = 10
435.9'	37.5'			SPT-15	37.5 - 39.0	1.2	1-2-4	20	N = 6

Page: 2 of 2

Project N	Number	175539022			Location	W	est Cres	: West Pon	d Dam
Project I	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	<u>B-1</u>		Total Dept	h71.5 ft
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
_ - -		Lean Clay With Sayellowish brown w	vith light , very	SPT-16	40.0 - 41.5	1.3	1-2-3	24	N = 5
-		soft to medium sti (Continued)	ff	ST-17	42.5 - 44.5	2.0		22	-
- -				SPT-18	45.0 - 46.5	1.5	1-1-1	30	N = 2
-				SPT-19	47.5 - 49.0	1.5	1-1-2	23	N = 3
<u>-</u> -				SPT-20	50.0 - 51.5	1.1	1-1-3	28	N = 4
-				SPT-21	52.5 - 54.0	1.5	1-1-1	27	N = 2
-				SPT-22	55.0 - 56.5	1.5	1-2-2	25	N = 4
-				SPT-23	57.5 - 59.0	1.1	1-1-3	28	N = 4
- - -				SPT-24	60.0 - 61.5	1.4	1-2-3	28	N = 5
-				SPT-25	62.5 - 64.0	1.3	1-2-4	37	N = 6
- - - 405.9'	67.5'			SPT-26	65.0 - 66.5	1.2	2-2-5	34	N = 7
-		Gray, Weathered Augered	Shale,	SPT-27	67.5 - 69.0	0.4	50+	14	50+
- - 401.9'	71.5'			SPT-28	70.0 - 71.5	0.3	50+	5	50+
		No Refusal / Bottom of Hole							- - -
THANKING C									<u>-</u> -
SM_EGACY 7505802CLB 7 CREEKGA FNSN-SRA-HILLOGGU 50010									- - -
7777777									_
									-

Project Nu	umber	175539022			Location	V	est Toe:	West Pond	Dam
Project Na	ame	AEP Clifty Creek /	Ash Ponds		Boring No.	B-2		Total Dept	h61.0 ft
County	_	Jefferson, IN			Surface Elev	vation	44	4.0 ft	
Project Ty	ype	Geotechnical Explo	oration		Date Started	d1	1/12/09	Completed	11/12/09
Superviso	or	C. Nisingizwe Dri	ller M. Wet	hington	Depth to Wa	ater 22	2.5 ft	Date/Time	11/12/09
Logged B	sy -	C. Nisingizwe			Depth to Wa	ater N	/A	Date/Time	N/A
Lithology	у		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
444.0'	0.0'	Top of Hole							
-		Lean Clay With Sa yellowish brown w moist to wet, soft t stiff	ith gray,	SPT-1	2.5 - 4.0	1.2	7-8-11	17	N = 19
- -				SPT-2	5.0 - 6.5	0.6	4-3-4	19	N = 7
-				SPT-3	7.5 - 9.0	0.6	3-3-4	24	N = 7
-				ST-4	10.0 - 12.0	1.6		22	_ - -
-			SPT-5	12.5 - 14.0	1.2	2-2-3	25	N = 5	
				SPT-6	15.0 - 16.5	1.2	2-2-2	28	N = 4
-				SPT-7	17.5 - 19.0	1.5	1-1-1	30	N = 2
-				SPT-8	20.0 - 21.5	1.5	1-2-2	32	N = 4
-				ST-9	22.5 - 24.5	2.0		29	<u>-</u>
<u>-</u> -				SPT-10	25.0 - 26.5	1.5	2-2-2	29	N = 4
414.0'	30.0'			SPT-11	27.5 - 29.0	0.7	1-4-5	30	N = 9
717.0	50.0	Lean Clay With Sa gray, moist to wet, medium stiff		SPT-12	30.0 - 31.5	1.5	3-3-3	25	N = 6
		medidiri ətili		SPT-13	32.5 - 34.0	1.5	3-3-3	32	N = 6
				SPT-14	35.0 - 36.5	1.5	1-2-3	33	N = 5
				SPT-15	37.5 - 39.0	1.5	1-2-2	31	N = 4

Page: 2 of 2

		175539022			Location	W	est Toe:	West Pond	Dam
Project N	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-2		Total Dept	h61.0 ft
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
_ - -		Lean Clay With S gray, moist to wet medium stiff <i>(Co</i>	, soft to	SPT-16	40.0 - 41.5	1.5	3-3-3	30	N = 6
-				ST-17	42.5 - 44.5	1.5		33	
- -				SPT-18	45.0 - 46.5	1.5	1-1-1	35	N = 2
-									-
- 392.5'	51.5'			SPT-19	50.0 - 51.5	1.5	4-3-3	33	N = 6
- -		Gravel With Silt A gray, wet, very de							
- 388.5'	55.5'			SPT-20	55.0 - 55.5	0.4	11-50+	10	Began Core N = 50+
- - -		Shale, gray, hard, bedded	medium						
383.0'	61.0'			45	5.5	5.5	100	61.0	- -
_		Bottom of Hole		'		'		,	
- - - -		Top of Rock = 56. Elevation (388.0')	0'						- - -
- - -									-
_ _ _									
<u>-</u>									-
- -									
- -									
<u>-</u> -									-
 - -									

Supervisor C. Nisingizwe Depth M. Wethington Depth to Water M. Wa	Project	Number	175539022			Location	M	liddle Cre	st: West Po	nd Dam
Project Type Geotechnical Exploration Date Started 11/4/09 Completed 11/5/09 Supervisor C. Nisingizwe Driller M. Wethington Depth to Water 40.0 ft Date/Time 11/4/09 11/13/09 Depth to Water 40.0 ft Date/Time 11/4/09 11/13/09 Depth to Water 40.0 ft Date/Time 11/4/09	Project	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-3		Total Dept	h71.5 ft
Supervisor C. Nisingizwe	County	-	Jefferson, IN			Surface Elev	vation	47	1.6 ft	
Logged By C. Nisingizwe Depth to Water 31.0 ft Date/Time 11/13/0	Project	Туре	Geotechnical Explo	oration		Date Started	d1	1/4/09	Completed	11/5/09
Lithology	Supervi	sor	C. Nisingizwe Dr	iller M. Wet	hington	Depth to Wa	ater 4	0.0 ft	Date/Time	11/4/09
Elevation Depth Description Rock Core RQD Run Rec. Ft. Rec. % Run Depth Remarks	Logged	Ву	C. Nisingizwe			Depth to Wa	ater 3	1.0 ft	Date/Time	11/13/09
471.6' 0.0' Top of Hole Lean Clay With Sand, light yellowish brown with light gray, damp to moist, stiff to very stiff, Fill SPT-1 2.5 - 4.0 0.7 4-5-6 15 N = 11 SPT-2 5.0 - 6.5 1.1 3-4-4 17 N = 8 SPT-3 7.5 - 9.0 1.1 3-3-7 16 N = 10 SPT-5 12.5 - 14.0 1.5 4-4-5 22 N = 9 SPT-6 15.0 - 16.5 1.0 3-4-6 17 N = 10 SPT-7 17.5 - 19.0 1.3 3-5-7 18 N = 12 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-10 SPT-11 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 32.5 - 34.0 1.5 4-7-10 17 N = 17 32.5 34.0 34.5	Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Lean Clay With Sand, light yellowish brown with light gray, damp to moist, stiff to very stiff, Fill SPT-1 2.5 - 4.0 0.7 4-5-6 15 N = 11 SPT-2 5.0 - 6.5 1.1 3-4-4 17 N = 8 SPT-3 7.5 - 9.0 1.1 3-3-7 16 N = 10 ST-4 10.0 - 12.0 2.0 16 SPT-5 12.5 - 14.0 1.5 4-4-5 22 N = 9 SPT-6 15.0 - 16.5 1.0 3-4-6 17 N = 10 SPT-7 17.5 - 19.0 1.3 3-5-7 18 N = 12 ST-8 20.0 - 22.0 2.0 18 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17			•	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
yellowish brown with light gray, damp to moist, stiff to very stiff, Fill SPT-1	471.6'	0.0'	•							_
ST-4 10.0 - 12.0 2.0 16 SPT-5 12.5 - 14.0 1.5 4-4-5 22 N = 9 SPT-6 15.0 - 16.5 1.0 3-4-6 17 N = 10 SPT-7 17.5 - 19.0 1.3 3-5-7 18 N = 12 ST-8 20.0 - 22.0 2.0 18 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-17 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-17 32.5 - 34.0 32.5 -	- - - -		yellowish brown w gray, damp to moi	ith light						- -
SPT-5 12.5 - 14.0 1.5 4-4-5 22 N = 9 SPT-6 15.0 - 16.5 1.0 3-4-6 17 N = 10 SPT-7 17.5 - 19.0 1.3 3-5-7 18 N = 12 ST-8 20.0 - 22.0 2.0 18 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	- - -				SPT-3	7.5 - 9.0	1.1	3-3-7	16	N = 10
SPT-6 15.0 - 16.5 1.0 3-4-6 17 N = 10 SPT-7 17.5 - 19.0 1.3 3-5-7 18 N = 12 ST-8 20.0 - 22.0 2.0 18 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	- -			10.0 - 12.0	2.0		16			
SPT-7 17.5 - 19.0 1.3 3-5-7 18 N = 12 ST-8 20.0 - 22.0 2.0 18 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	<u>-</u>			SPT-5	12.5 - 14.0	1.5	4-4-5	22	N = 9	
ST-8 20.0 - 22.0 2.0 18 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	-				SPT-6	15.0 - 16.5	1.0	3-4-6	17	N = 10
SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	- -				SPT-7	17.5 - 19.0	1.3	3-5-7	18	N = 12
SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	- - -				ST-8	20.0 - 22.0	2.0		18	
SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	- -				SPT-9	22.5 - 24.0	1.5	3-5-7	17	N = 12
SPT-12 30.0 - 31.5					SPT-10	25.0 - 26.5	1.3	3-4-5	18	N = 9
SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17					SPT-11	27.5 - 29.0	1.5	6-7-8	16	N = 15
					SPT-12	30.0 - 31.5	1.5	5-5-5	18	N = 10
CDT 44 25 0 20 5 4 5 5 7 0 20 N 40	_				SPT-13	32.5 - 34.0	1.5	4-7-10	17	N = 17
		27 E'			SPT-14	35.0 - 36.5	1.5	5-7-9	22	N = 16
- 434.1' 37.5' - SPT-15 37.5 - 39.0 1.5 5-7-11 20 N = 18	434.T - -	31.5			SPT-15	37.5 - 39.0	1.5	5-7-11	20	N = 18

Page: 2 of 2

Project N	Number	175539022			Location	Mi	iddle Cre	st: West Po	nd Dam
Project N	Name	AEP Clifty Creek / A	Ash Ponds		Boring No.	B-3		Total Dept	h71.5 ft
Litholo	ogv		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
- - -		Lean Clay With Sa to light brown, moi very stiff to very st	st to wet,	SPT-16	40.0 - 41.5	1.5	1-2-2	24	N = 4
-		(Continued)		SPT-17	42.5 - 44.0	1.5	1-2-2	23	N = 4
-				SPT-18	45.0 - 46.5	1.3	2-3-3	25	N = 6
-				ST-19	47.5 - 49.5	2.0		23	-
[-				SPT-20	50.0 - 51.5	1.5	1-2-2	25	N = 4
-				SPT-21	52.5 - 54.0	1.5	1-1-1	25	N = 2
-				SPT-22	55.0 - 56.5	1.5	1-2-3	24	N = 5
_				SPT-23	57.5 - 59.0	1.5	1-1-1	40	N = 2
-				SPT-24	60.0 - 61.5	1.5	3-4-4	28	N = 8
				SPT-25	62.5 - 64.0	1.5	1-2-4	33	N = 6
-				SPT-26	65.0 - 66.5	1.5	1-3-4	34	N = 7
-				SPT-27	67.5 - 69.0	1.5	2-4-5	29	N = 9
- 400.1'	71.5'			SPT-28	70.0 - 71.5	1.5	3-3-5	31	N = 8
77659022 CLIFTY CREEK GPU FMSM-GRAPHIC LOG GDT 5/20/10		No Refusal / Bottom of Hole							- - - - -
2Y 175639022 CLIFT									- - -

				Location	IV	iidale Loe	: West Pond	ווואַט ג
Project Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-4	·	Total Dept	h71.5 ft
County	Jefferson, IN			Surface Elev	vation	44	4.0 ft	
Project Type	Geotechnical Expl	oration		Date Started	d1	1/10/09	Completed	11/11/09_
Supervisor	C. Nisingizwe Dr	iller M. Wet	hington	Depth to Wa	ater 2	2.5 ft	Date/Time	11/10/09_
Logged By	C. Nisingizwe			Depth to Wa	ater 16	6.0 ft	Date/Time	11/13/09
Lithology		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation Depth	-	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
444.0' 0.0'	Top of Hole							_
- - -	Lean Clay With S brown to dark gra to moist, medium very stiff	y, damp	SPT-1	2.5 - 4.0	1.3	8-8-8	14	N = 16
- -			SPT-2	5.0 - 6.5	1.4	6-7-8	16	N = 15 _
-			ST-3	7.5 - 9.5	2.0			- -
_ -			SPT-4	10.0 - 11.5	1.3	3-5-6	19	N = 11 _
429.0' 15.0			SPT-5	12.5 - 14.0	1.0	2-3-4	22	N = 7
-	Lean Clay With S gray, moist to wet stiff		SPT-6	15.0 - 16.5	1.2	2-2-3	26	N = 5
-	Sun		ST-7	17.5 - 19.5	2.0			-
-			SPT-8	20.0 - 21.5	1.5	2-2-2	26	N = 4
-			SPT-9	22.5 - 24.0	1.5	1-2-3	27	N = 5
-			SPT-10	25.0 - 26.5	1.5	2-2-4	26	N = 6
_			SPT-11	27.5 - 29.0	1.5	1-2-3	27	N = 5
			SPT-12	30.0 - 31.5	1.5	1-1-2	28	N = 3
-			SPT-13	32.5 - 34.0	1.5	1-2-2	35	N = 4
			SPT-14	35.0 - 36.5	1.5	2-4-5	31	N = 9
-			ST-15	37.5 - 39.5	2.0			- -

Page: 2 of 2

Project Number 175539022						Location	N	liddle Toe	: West Pon	d Dam
	Project N	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-4		Total Dept	h71.5 ft
ŀ	Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
L	Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-	-		Lean Clay With Sa gray, moist to wet stiff (Continued)	and, , soft to	SPT-16	40.0 - 41.5	1.5	2-2-2	24	N = 4
F					SPT-17	42.5 - 44.0	1.2	1-2-3	33	N = 5
	-				SPT-18	45.0 - 46.5	1.5	2-4-4	35	N = 8
ŀ					SPT-19	47.5 - 49.0	1.2	1-2-4	31	N = 6
	-				SPT-20	50.0 - 51.5	1.5	2-3-4	31	N = 7
-					SPT-21	52.5 - 54.0	1.5	1-2-3	30	N = 5
E	386.5'	57.5'			SPT-22	55.0 - 56.5	1.5	2-3-4	21	N = 7
	000.0	07.0	Gravel With Silt A gray, moist, dense		SPT-23	57.5 - 59.0	1.5	10-17-22	13	N = 39
	-		dense		SPT-24	60.0 - 61.5	1.5	16-28-18	9	N = 46
	-				SPT-25	65.0 - 66.5	0.7	26-50+	12	N = 50+
10	- 372.5'	71.5'			SPT-26	70.0 - 71.5	0.7	20-22-30	9	N = 52
GRAPHIC LOG. GDT 5/20.	-		No Refusal / Bottom of Hole							- - -
CREEK.GPJ FMSM-										- - -
175539022 CLIFTY	-									- -
ITEC/FMSM_LEGACY										- - -

Project I	Number	175539022			Location	E	ast Crest	West Pond	Dam
Project I	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-5		Total Dept	h71.5 ft
County	_	Jefferson, IN			Surface Elev	vation	46	8.7 ft	
Project ⁻	Гуре	Geotechnical Explo	oration		Date Started	1	1/10/09	Completed	I11/10/09_
Supervis	sor	C. Nisingizwe Dri	iller M. Wet	hington	Depth to Wa	ater 4	5.0 ft	Date/Time	11/10/09
Logged	Ву	C. Nisingizwe			Depth to Wa	ater 3	3.8 ft	Date/Time	11/13/09
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
468.7'	0.0'	Top of Hole							_
- - - -		Lean Clay With Sayellowish brown w gray, damp to moi medium stiff to ver Fill	rith light st,	SPT-1	2.5 - 4.0 5.0 - 6.5	1.5 1.5	6-9-10 4-4-5	15 17	N = 19 - N = 9 -
- - -			7.5 - 9.5	1.6		17	- -		
<u>-</u> - -			SPT-4	10.0 - 11.5	1.3	6-7-8	23	N = 15	
-			SPT-5	12.5 - 14.0	0.0	3-4-6		N = 10	
<u>-</u> - -				SPT-6	15.0 - 16.5	1.3	1-3-4	16	N = 7
-				SPT-7	17.5 - 19.0	1.0	5-7-9	16	N = 16
- - -				SPT-8	20.0 - 21.5	0.6	1-2-5	18	N = 7
- -				ST-9	22.5 - 24.5	1.8		19	- -
- -				SPT-10	25.0 - 26.5	1.2	2-3-5	22	N = 8
- -				SPT-11	27.5 - 29.0	1.4	1-2-5	25	N = 7
				SPT-12	30.0 - 31.5	1.3	4-5-7	23	N = 12
_ _				SPT-13	32.5 - 34.0	1.5	2-3-5	19	N = 8
- - 432.2'	36.5'	1		SPT-14	35.0 - 36.5	1.5	4-6-10	18	N = 16
 - -		Lean Clay With Sa gray, moist, soft	ana,	SPT-15	37.5 - 39.0	1.5	2-3-3	21	N = 6
			Ctantac	Concul	tina Services	Ino			5/20/10

Page: 2 of 2

Project N	Number	umber 175539022				Ea	ast Crest	: West Pond	Dam
Project N	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-5		Total Dept	h71.5 ft
Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Lean Clay With Sagray, moist, soft (Continued)	and,	SPT-16	40.0 - 41.5	1.3	1-1-2	25	N = 3
_				ST-17	42.5 - 44.5	2.0		23	
421.2'	47.5'			SPT-18	45.0 - 46.5	1.5	1-1-3	25	N = 4
421.2	47.5	Sandy Silt, light ye brown to gray, we		SPT-19	47.5 - 49.0	1.5	1-1-3	28	N = 4
	stiff				50.0 - 51.5	1.5	1-1-5	24	N = 6
		SPT-21	52.5 - 54.0	1.0	1-1-1	22	N = 2		
				SPT-22	55.0 - 56.5	1.3	1-2-2	23	N = 4
				SPT-23	57.5 - 59.0	1.5	1-2-3	26	N = 5
-				SPT-24	60.0 - 61.5	1.5	2-3-4	22	N = 7
				SPT-25	62.5 - 64.0	1.5	2-3-6	27	N = 9
				SPT-26	65.0 - 66.5	1.5	2-5-6	28	N = 11
				SPT-27	67.5 - 69.0	1.5	2-4-5	28	N = 9
397.2'	71.5'			SPT-28	70.0 - 71.5	1.5	3-5-8	30	N = 13
		No Refusal / Bottom of Hole							

5/20/1

Project Nu	umber	175539022			Location	E	ast Toe: \	Nest Pond [Dam
Project Na	ame	AEP Clifty Creek /	Ash Ponds		Boring No.	B-6		Total Dept	h71.5 ft
County	_	Jefferson, IN			Surface Elev	vation	44	5.5 ft	
Project Ty	/pe	Geotechnical Explo	oration		Date Started	d1	1/19/09	Completed	11/19/09
Superviso	or _	C. Nisingizwe Dri	ller Danny	Jessie	Depth to Wa	ater 30	0.0 ft	Date/Time	11/19/09
Logged By	y	C. Nisingizwe			Depth to Wa	ater N	/A	Date/Time	N/A
Lithology	у		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
445.5'	0.0'	Top of Hole							_
- - - -		Lean Clay With Sa brown to gray, dar moist, stiff to very	np to	SPT-1	2.5 - 4.0	1.0	2-4-4	19	N = 8
- - -			SPT-2	5.0 - 6.5	1.0	4-4-6	18	N = 10	
-			ST-3	7.5 - 9.5	2.0		25	_	
-			SPT-4	10.0 - 11.5	1.2	5-7-11	16	N = 18	
-				SPT-5	12.5 - 14.0	1.1	2-2-2	21	N = 4
-				SPT-6	15.0 - 16.5	1.3	1-1-2	31	N = 3
-				ST-7	17.5 - 19.5	1.2		32	-
-				SPT-8	20.0 - 21.5	1.5	0-1-0	32	N = 1
_				SPT-9	22.5 - 24.0	1.5	0-0-2	29	N = 2
- - 418.0'	27.5'			SPT-10	25.0 - 26.5	1.5	2-1-3	29	N = 4
		Sandy Silt, gray, n wet, very soft to st		SPT-11	27.5 - 29.0	1.5	0-3-2	32	N = 5
				SPT-12	30.0 - 31.5	1.5	0-0-3	32	N = 3
				SPT-13	32.5 - 34.0	1.5	0-1-2	33	N = 3
				SPT-14	35.0 - 36.5	1.5	0-0-1	35	N = 1
			SPT-1				0-0-1	30	N = 1 - 5/20/10

Page: 2 of 2

Pi	roject N	Number	175539022			Location	E	ast Toe: \	Nest Pond I	Dam
Pr	roject N	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-6		Total Dept	h71.5 ft
	Litholo	nav		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elev	/ation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-			Sandy Silt, gray, r wet, very soft to si (Continued)	tiff	ST-16		1.1		31	<u>-</u> - -
_					SPT-17	42.5 - 44.0	1.5	0-1-1	35	N = 2
-					SPT-18	45.0 - 46.5	1.5	0-0-1	40	N = 1
-					SPT-19	47.5 - 49.0	1.5	0-0-1	40	N = 1
-					SPT-20	50.0 - 51.5	1.5	0-2-3	39	N = 5
-					SPT-21	52.5 - 54.0	1.5	0-5-6	27	N = 11
-					SPT-22	55.0 - 56.5	1.5	4-3-4	31	N = 7
-					SPT-23	57.5 - 59.0	1.5	4-4-5	35	N = 9
- - - -					SPT-24	60.0 - 61.5	1.5	5-5-6	28	N = 11
- - -					SPT-25	65.0 - 66.5	1.5	4-5-4	28	N = 9
- - 37	4.0'	71.5'	N. D. C. L.		SPT-26	70.0 - 71.5	0.0	5-5-5		N = 10
77858022 CLIFTY CREEK GPJ. FNSM-GRAPHICLOG, GDT. 5/2/			No Refusal / Bottom of Hole							- - - - - -
STANTEC/FMSM_LEGACY 17055										- - -

LANDFILL RUNOFF COLLECTION POND: 2009 GEOTECHNICAL EXPLORATION

Project Name AEP Clifty Creek / Ash Ponds Jufferson, IN Jufferson, IN Project Type Geotechnical Exploration Date Started 11/12/09 Completed 11/12/09 Completed 11/12/09 Date / Time N/A Date / Time / Time N/A Date / Time N/A Date / Time / Time / Time	Project	Project Number 175539022				Location	С	rest: LRC	P Dam	
Project Type	Project	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-7		Total Depth	29.0 ft
Supervisor C. Nisingizwe Driller M. Wethington Depth to Water Dry Date/Time 11/12/09 N/A	County		Jefferson, IN			Surface Ele	vation	50	3.4 ft	
Logged By C. Nisingizwe Depth to Water N/A Date/Time N/A	Project	Туре	Geotechnical Explo	oration		Date Started 11/12/09			Completed	11/12/09
Lithology	Supervi	sor	C. Nisingizwe Dri	ller M. Wet	hington	Depth to Water Dry			Date/Time	11/12/09
Elevation Depth Description Rock Core RQD Run Rec. Ft. Rec. % Run Depth Remarks	Logged	Ву	C. Nisingizwe			Depth to Wa	ater N	/A	Date/Time	N/A
ST-1 23.0 - 25.0 2.0	Lithol	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
ST-1 23.0 - 25.0 2.0 ST-2 25.0 - 27.0 2.0 20 No Refusal /	Elevation	Depth		Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
ST-1 23.0 - 25.0 2.0			•							
Lean Clay, yellow and light gray, moist, stiff ST-1 23.0 - 25.0 2.0 ST-2 25.0 - 27.0 2.0 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /	502.9'	0.5'	Asphalt pavement	and						-
ST-1 23.0 - 25.0 2.0 ST-2 25.0 - 27.0 2.0 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /	_		(-	and light						-
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /				and ngm						_
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /	-									_
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /	-									-
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /										_
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /	-									-
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /	-									-
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /										_
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /										_
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /	-									-
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /	-									_
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /										_
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /	-									-
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /	-									_
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /	-									_
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /										_
ST-2 25.0 - 27.0 2.0 20 20 ST-3 27.0 - 29.0 2.0 20 No Refusal /	_									-
ST-3 27.0 - 29.0 2.0 20 No Refusal /	-				ST-1	23.0 - 25.0	2.0			-
ST-3 27.0 - 29.0 2.0 20 No Refusal /					ST 2	25.0 27.0	2.0		20	_
474.4' 29.0' No Refusal /	_				31-2	20.0 - 21.0	2.0		20	_ _
No Refusal /		29 0'			ST-3	27.0 - 29.0	2.0		20	-
	7/7.4	20.0	No Refusal /		I .	<u> </u>	I	<u> </u>		_
										=
5										-
										_
										-
										-
										-
Stantec Consulting Services Inc.										4/16/10

Project I	Number	mber 175539022			Location Toe: LRCP Dam				
Project I	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-	8	Total Depth	a 31.0 ft
County	_	Jefferson, IN			Surface Ele	vation_	44	1.5 ft	
Project ⁻	Туре	Geotechnical Explo	oration		Date Started	d	11/19/09	Completed	11/19/09
Supervis	sor	C. Nisingizwe Dri	ller Danny	Jessie	Depth to WaterDry		Date/Time	11/19/09	
Logged	Ву	C. Nisingizwe			Depth to Wa	aterl	N/A	Date/Time	N/A
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft	. Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft	. Rec. %	Run Depth	Remarks
441.5'	0.0'	Top of Hole							
 		Silty Clay, yellow a gray, damp to moi						-	
		3 77 1						_	
-									-
-									_
									-
-									-
-									_
-									-
-									-
L									
425.5'	16.0'								-
-		Lean Clay, yellowi and light gray, mo	sh brown ist						_
		3 3 7							- -
-									_
-									-
									- -
-									_
-									_
02				ST-1	25.0 - 27.0	2.0		25	-
100 - - - 412.5'				ST-2	27.0 - 29.0	2.0		26	-
412.5'	29.0'	Lean Clay With Sa	and	_					-
호 - 410.5'	31.0'	yellowish brown a	nd light	ST-3	29.0 - 31.0	2.0		23	
		∖gray, moist	/						-
Y CREEK		No Refusal / Bottom of Hole							-
77553002 CLFTY CREE									
									-
ANTEC/FMSM_LEGACY									-
									_
ō									4/16/10
			Stanted	Consul	ting Services	Inc.			4/10/10

Project Number	er 175539022			Location	Location Crest: LRCP Dam			
Project Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B	-9	Total Depth	22.0 ft
County	Jefferson, IN			Surface Ele	vation	50	4.3 ft	
Project Type	Geotechnical Explo	oration		Date Started	- b	11/12/09	Completed	11/12/09
Supervisor	C. Nisingizwe Dr	iller M. We	thington	Depth to Wa	ater	Dry	Date/Time	11/12/09
Logged By	C. Nisingizwe			Depth to Wa		N/A	Date/Time	N/A
Lithology		Overburden	Sample #	Depth	Rec. F	t. Blows	Mois.Cont. %	
Elevation Depth	Description	Rock Core	RQD	Run	Rec. F	t. Rec. %	Run Depth	Remarks
504.3' 0.0'	Top of Hole							_
503.8' 0.5'	Asphalt pavement gravel base	Asphalt pavement and						-
- - - - - - - - - - -	Lean Clay, yellow and light gray, dar moist		ST-1	16.0 - 18.0	2.0		22	- - - - - - - - - - - - - -
_			ST-2	18.0 - 20.0	2.0		19	_
482.3' 22.0'			ST-3	20.0 - 22.0	2.0		20	-
	No Refusal / Bottom of Hole							- - - - - - - - - - - - - -

Project	Number	175539022		Location Toe: LRCP Dam					
Project	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-1	0	Total Depth	n 18.0 ft
County	-	Jefferson, IN			Surface Ele	vation	45	7.3 ft	
Project ⁻	Туре	Geotechnical Explo	ration		Date Started11/19/09		1/19/09	Completed	11/19/07
Supervi	sor	C. Nisingizwe Dri	ller Danny	Jessie	Depth to Water Dry		Date/Time	11/19/07	
Logged	Ву	C. Nisingizwe			Depth to Wa	ater N	/A	Date/Time	N/A
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks	
457.3'	0.0'	Top of Hole							
- - -		Silty Clay With Sa yellow and light gr to moist						- - -	
- - -									- - -
-									-
- - 444.1'	13.2'		ST-1	12.0 - 14.0	1.5		17	_	
-		Silty Sand, gray to						=	
441.3'	16.0'	damp to moist		ST-2	14.0 - 16.0	2.0		10	_
439.3'	18.0'	Silty Clay With Sa yellow and light gr \to moist	nd, ay, damp	ST-3	16.0 - 18.0	2.0		25	_
- - - -		No Refusal / Bottom of Hole	/						_ _ _ _
- - -									
HICLOS.401 4718									
- TANSMICKAPI									- - -
TI Y CKEEK'G									_
175538022.0									
M_LEGAC)									=
- Lec'twis									=
N N			Ctarata	. O	tina Services	lna			4/16/10

LANDFILL RUNOFF COLLECTION POND: 2015 GEOTECHNICAL EXPLORATION

Page: 1 of 3

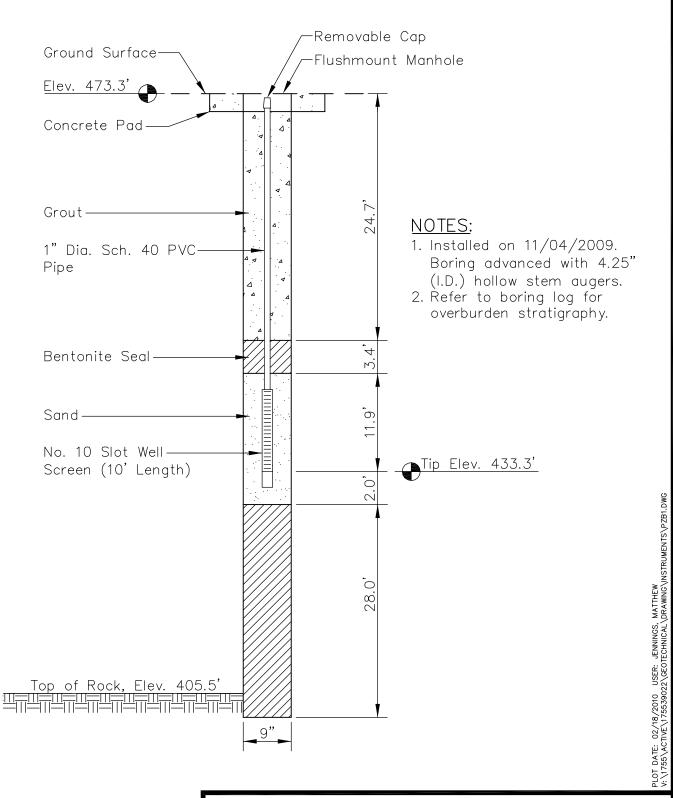
Project Nur	mber	175553022			Location	L	andfill Rur	noff Collection	on Pond Dam	
Project Nar	me	CCR Rule - AEP CI	ifty Creek		Boring No.	B-1	2	Total Depth	n 101.5 ft	
County		Jefferson, IN			Surface Elev	ation/	503	3.9 (estimated)		
Project Typ	pe	Geotechnical Explo	ration		Date Started	7.	/6/15	Completed	7/7/15	
Supervisor		C. Nisingizwe Dri	ller E. Cau	dill	Depth to Wa	iter 6	0.0 ft	Date/Time	7/7/15	
Logged By	- '	C. Nisingizwe			Depth to Wa	iter N	/A	Date/Time	N/A	
Lithology		-	Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %		
Elevation D	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks	
	0.0	Top of Hole								
(estimated) \(\square{1} \)	0.4_/	Asphalt and base							Pocket -	
-		Lean Clay With Sa damp, medium stif	nd, gray, f to stiff	SPT-1	1.0 - 2.5	1.5	1-2-5	21	Penetrometer (PP) = 2.50 tsf	
-									-	
				SPT-2	5.0 - 6.5	1.5	3-3-4	20	PP = 2.50 tsf	
-									-	
]	
									PP = 3.50 tsf	
-				SPT-3	10.0 - 11.5	1.2	3-4-5	23	-	
-									-	
]	
									PP = 2.50 tsf	
-				SPT-4	15.0 - 16.5	1.0	3-3-5	19	_	
									-	
									PP = 2.50 tsf	
-				SPT-5	20.0 - 21.5	0.9	4-6-9	18	-	
-									-	
									-	
									PP = 4.25 tsf	
-				SPT-6	25.0 - 26.5	1.1	3-5-7	18	- 4.20 (3)	
8678									_	
<u></u>									-	
DIAMETER STATE OF THE STATE OF									PP = 4.50 tsf -	
- HWSW				SPT-7	30.0 - 31.5	1.3	2-5-8	19	-4.50 (5)	
-									-	
									+	
- LEG									DD = 4.00 t-f	
				SPT-8	35.0 - 36.5	0.9	WOH-3-4	18	PP = 4.00 tsf –	
40				Cta	ıntec				8/6/15	

Stantec

Page: 2 of 3

Project	Number	175553022			Location	L	andfill Ru	noff Collection	n Pond Dam
Project	Name	CCR Rule - AEP C	Clifty Creek		Boring No.	<u>B-1</u>	2	Total Depth	101.5 ft
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
	40.0	Lean Clay With Sadamp, medium sti	and, gray, iff to stiff						_
		Silty Clay With Sa brown, moist, med to very stiff		SPT-9	40.0 - 41.5	1.5	6-8-8	16	
-				SPT-10	45.0 - 46.5	1.5	1-3-5	19	-
_	50.0	Silt With Sand, gra	avish light	SPT-11	50.0 - 51.5	1.5	2-3-3	22	-
		brown, moist, med to stiff	dium stiff	SF I-II	30.0 - 31.3	1.5	2-3-3	22	
-	58.0			SPT-12	55.0 - 56.5	1.0	2-5-8	20	-
- -	00.0	Silty Sand, grayish brown, damp, very		SPT-13	60.0 - 61.5	1.4	3-11-17	15	-
	63.5	O'll Will O and an	- Jak Baka						
-		Silt With Sand, grabrown, wet, stiff	ayısıı ligili	SPT-14	65.0 - 66.5	1.5	2-3-8	28	-
	70.0	Sand, mottled gra brown, moist to we medium stiff to stif	et,	SPT-15	70.0 - 71.5	1.5	3-5-5	22	-
_				SPT-16	75.0 - 76.5	1.3	2-3-5	28	-
	78.0								8/6/1

Stantec

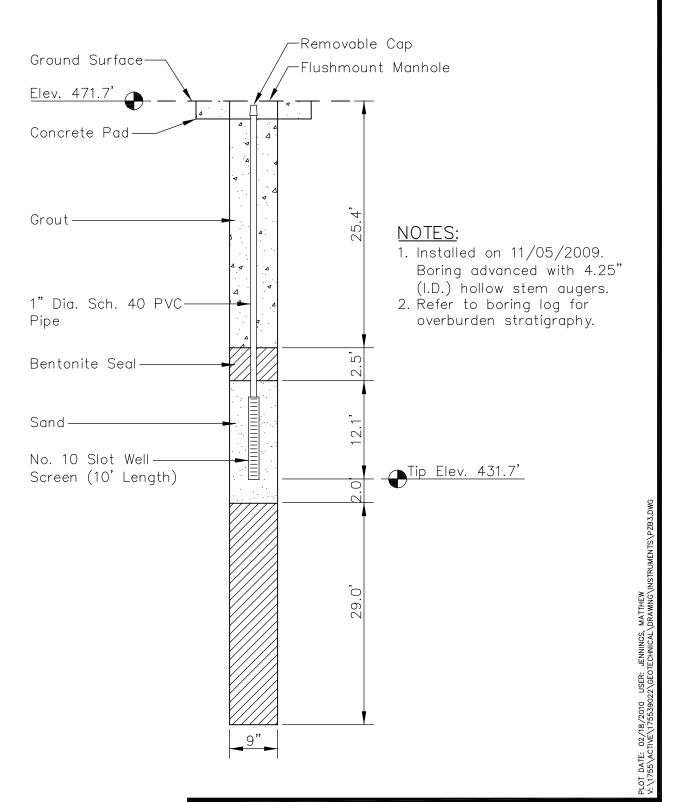

Page: 3 of 3

Project I	Project Number 175553022				Location	La	andfill Rui	noff Collection	on Pond Dam
Project I	Name	CCR Rule - AEP C	lifty Creek		Boring No.	B-1 2	2	Total Dept	h 101.5 ft
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
- - - -		Silt, gray, moist to medium stiff to stif	wet, f	SPT-17	80.0 - 81.5	1.5	6-9-6	26	-
- - -				SPT-18	85.0 - 86.5	1.5	2-3-5	28	-
-	90.0	Lean Clay, gray, m medium stiff to ver	noist, y stiff	SPT-19	90.0 - 91.5	1.5	2-4-4	25	PP = 2.25 tsf -
- - - -				SPT-20	95.0 - 96.5	1.5	5-8-11	23	PP = 3.75 tsf -
- - -	101.5			SPT-21	100.0 - 101.5	1.5	4-6-8	27	PP = 3.50 tsf -
		No Refusal / Bottom of Hole							-
					intec				8/6/15

APPENDIX C

PIEZOMETER DETAILS

Northing: 448,055.94 Easting: 566,098.09 Ground Elevation: 473.3'

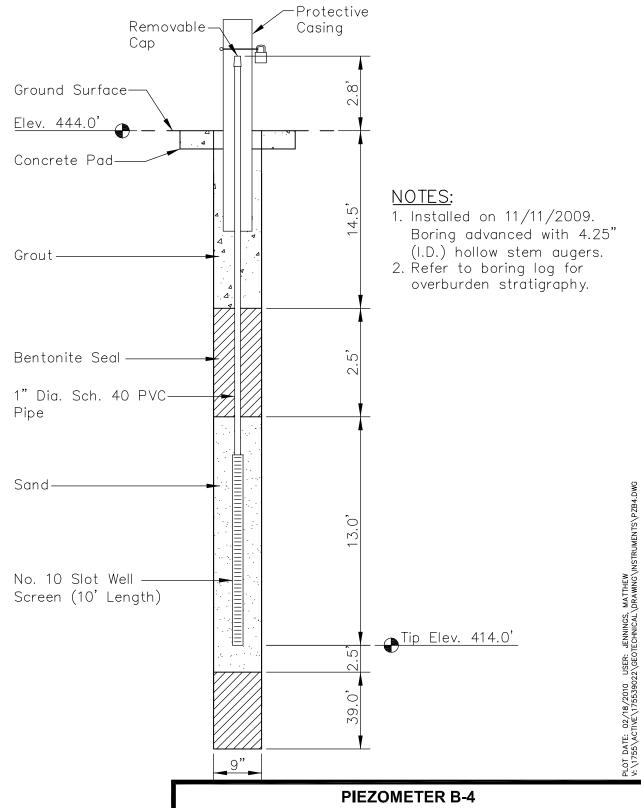

Horizontal Datum: NAD 27 Vertical Datum: NGVD88

PIEZOMETER B-1 WEST BOTTOM ASH DAM CLIFTY CREEK PLANT

Stantec Consulting Services Inc. 11687 Lebanon Rd. Cincinnati, Ohio 45241-2012 513-842-8200

DRAWN BY M	J DATE	FEB.,	2010	REV	ISED	SHEE
CHECKED BY	PROJ.	NO .17553	39022	1.	3.	1 0
CHECKED BY EM	SCALE		NTS	2.	4.	1 01

Northing: 448,278.25 Easting: 566,522.86 Ground Elevation: 471.7

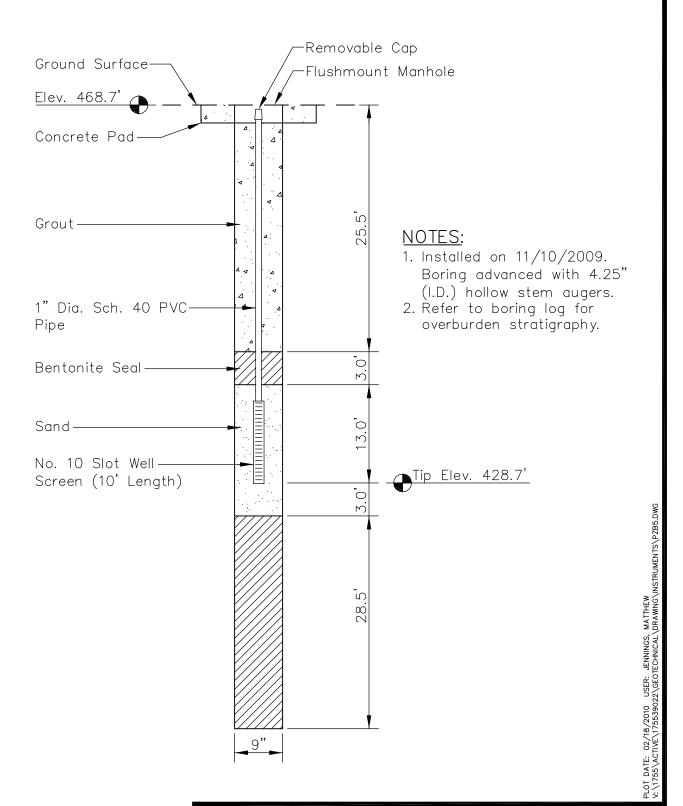

Horizontal Datum: NAD 27 Vertical Datum: NGVD88

PIEZOMETER B-3 WEST BOTTOM ASH DAM CLIFTY CREEK PLANT

Stantec Consulting Services Inc. 11687 Lebanon Rd. Cincinnati, Ohio 45241-2012 513-842-8200

DRAWN BY	MJ	DATE	FEB.,	2010	REV	ISED	SHEET
CHECKED BY	CN	PROJ. N	o .17553	39022	1.	3.	1 OF
CHECKED BY	EMK	SCALE		NTS	2.	4.	1 01

Northing: 448,202.42 Easting: 566,559.67 Ground Elevation: 444.0'


Horizontal Datum: NAD 27 Vertical Datum: NGVD88

PIEZOMETER B-4 WEST BOTTOM ASH DAM CLIFTY CREEK PLANT

Stantec Consulting Services Inc. 11687 Lebanon Rd. Cincinnati, Ohio 45241-2012 513-842-8200

DRAWN BY	CW	DATE	FEB.,	2010	REV	ISED	SHEET
CHECKED BY	CN	PROJ. N	o .17553	9022	1.	3.	1 OF
CHECKED BY	EMK	SCALE		NTS	2.	4.	-

Northing: 448,958.53 Easting: 567,968.94 Ground Elevation: 468.7

Horizontal Datum: NAD 27 Vertical Datum: NGVD88

PIEZOMETER B-5 WEST BOTTOM ASH DAM CLIFTY CREEK PLANT

Stantec Consulting Services Inc. 11687 Lebanon Rd. Cincinnati, Ohio 45241-2012 513-842-8200

DRAWN BY	MJ	DATE	FEB., 2010	REV	ISED	SHEET
CHECKED BY	CN	PROJ. NO.	175539022	1.	3.	1 OF 1
CHECKED BY	EMK	SCALE	NTS	2.	4.	

APPENDIX D

SOIL CLASSIFICATION SUMMARIES

Summary of Soil Tests

Project Name	AFP - Clifty Cr	eek - West Botto	om Ash and Fly Ash Ponds & Rubject Number175539022_
Source		', 12.5'-14.0'	
County	Jefferson, IN		Date Received 11-16-09
Sample Type			Date Reported 11-30-09
campic Type	Of 1 Comp		Bate Reported 11 00 00
			Test Results
<u>Nat</u>	ural Moisture C	ontent	Atterberg Limits
	d: ASTM D 2216		Test Method: ASTM D 4318 Method A
Mois	ture Content (%)	:19.1	Prepared: Dry
			Liquid Limit: 32
			Plastic Limit: 19
	article Size Ana		Plasticity Index: 13 Activity Index: 0.54
	n Method: ASTM Method: ASTM D		Activity Index: 0.54
	r Method: ASTM		
i iyalomete	i Metriou. As i M	D 422	Moisture-Density Relationship
Pa	rticle Size	%	Test Not Performed
	Sieve Size (mm) Passing		Maximum Dry Density (lb/ft³): N/A
3"	75	1 assing	
2"			
	50		Optimum Moisture Content (%): N/A
1 1/2"			Over Size Correction %:N/A
3/4"	25 19	+	
3/4	9.5		California Bearing Ratio
No. 4	4.75	100.0	Test Not Performed
No. 10		99.8	Bearing Ratio (%): N/A
No. 40		98.4	Compacted Dry Density (lb/ft ³): N/A
No. 200		84.0	Compacted Moisture Content (%): N/A
110.200	0.02	49.1	14/7
	0.005	31.1	
	0.002	23.7	Specific Gravity
estimated	d 0.001	22.1	Test Method: ASTM D 854
			Prepared: Dry
Plus 3 in. m	naterial, not inclu	ided: 0 (%)	Particle Size: No. 10
	1		Specific Gravity at 20° Celsius: 2.70
	ASTM	AASHTO	
Range		(%)	
Gravel		0.2	Classification
Coarse Sa		1.4	Unified Group Symbol: CL
Medium S		14.4	Group Name: Lean clay with sand
Fine Sar Silt	nd 14.4 52.9	14.4	
Clay	31.1	60.3	AASHTO Classification: A-6 (10)
L	J 31.1	۷۵.1	AAGITI O Glassification. A-0 (10)

Comments:

Project	Name
Source	

AEP - Clifty Creek - West Bottom Ash and Fly Ash Ponds subsurface respect Number 175539022

B-1, 10.0'-11.5', 12.5'-14.0'

Lab ID 4

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: ASTM D 422
Prepared using: ASTM D 421

Particle Shape: Angular
Particle Hardness: Hard and Durable

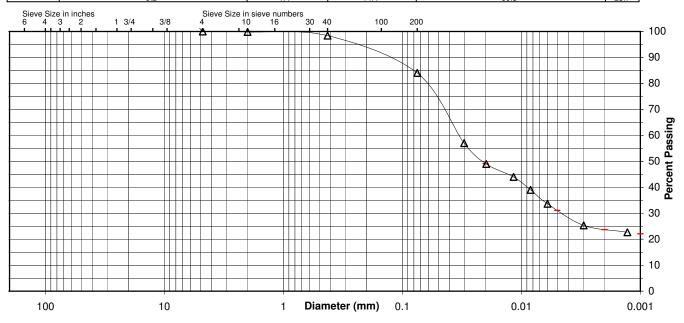
Tested By: KR
Test Date: 11-20-2009
Date Received 11-16-2009

Maximum Particle size: No. 4 Sieve

Sieve Size	% Passing
3"	
2"	
1 1/2"	
1"	
3/4"	
3/8"	
No. 4	100.0
No. 10	99.8

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.7

Dispersed using: Apparatus A - Mechanical, for 1 minute

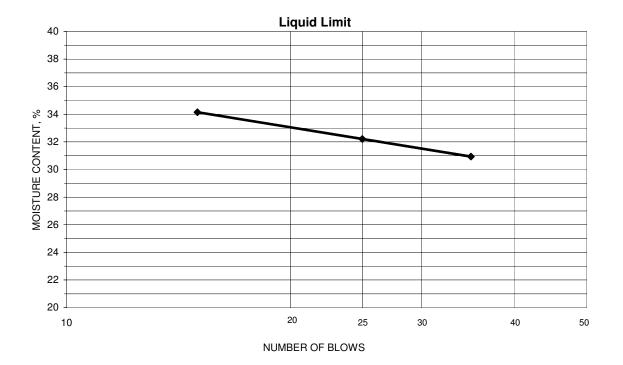
No. 40	98.4				
No. 200	84.0				
0.02 mm	49.1				
0.005 mm	31.1				
0.002 mm	23.7				
0.001 mm	22.1				

Particle Size Distribution

	ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay	
		0.0	0.0	0.2	1.4	14.4	52.9	31.1	
AASHTO	Gravel		Coarse Sand	Fine Sand	Silt		Clay		
AASIIIO		0.2		1.4	14.4	60.3		23.7	

Comments Reviewed By

Project Source AEP - Clifty Creek - West Bottom Ash and Fly Ash Ponds subsurface ex


B-1, 10.0'-11.5', 12.5'-14.0'

Project No. 175539022 Lab ID 4 % + No. 40 2 Date Received 11-16-2009

Tested By Test Date

RG	Test Method	ASTM D 4318 Method A
11-23-2009	Prepared	Dry

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
22.20	19.41	11.24	15	34.1	
20.53	18.13	10.68	25	32.2	
22.58	19.87	11.11	35	30.9	32
				·	

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Water Content (%)	Plastic Limit	Plasticity Index
24.73	22.56	11.06	18.9	19	13
24.53	22.36	11.08	19.2		

Remarks:		
· -	Reviewed By	

Source B-1, 47.5'-49.0', 50.0'-51.5' Lab ID 20	County Sample Type SPT Comp Date Received 11-16-09				
Source B-1, 47.5'-49.0', 50.0'-51.5' Lab ID 20	Source B-1, 47.5'-49.0', 50.0'-51.5' Lab ID 20	Project Name	AEP - Clifty Cree	ek - West Bottor	m Ash and Fly Ash Ponds Rribis ct Number 175539022
Test Results	Test Results Test Results				
Test Results	Test Results Test Results	_			
Test Results	Natural Moisture Content				
Natural Moisture Content Test Method: ASTM D 2216 Moisture Content (%):	Natural Moisture Content Test Method: ASTM D 2216 Moisture Content (%): 25.3	Sample Type	SPT Comp		Date Reported 11-30-09
Test Method: ASTM D 2216	Test Method: ASTM D 2216				Test Results
Test Method: ASTM D 2216	Test Method: ASTM D 2216	Natu	ıral Moisture Co	ntent	Atterberg Limits
Liquid Limit: 16 Plastic Limit: 16 Plast	Liquid Limit: 28 Plastic Limit: 16				
Plastic Limit: 16 Plasticity Index: 12 Activity Index: 0.60	Particle Size Analysis	Moistu	re Content (%):	25.3	Prepared: Dry
Particle Size Analysis Preparation Method: ASTM D 421 Gradation Method: ASTM D 422 Hydrometer Method: ASTM D 422	Particle Size Analysis Preparation Method: ASTM D 421 Activity Index:				
Activity Index: 0.60	Preparation Method: ASTM D 421 Gradation Method: ASTM D 422				
Particle Size	Particle Size				
Particle Size	Particle Size				Activity Index: 0.60
Particle Size	Particle Size				
Particle Size	Particle Size	nydrometer	Method. As I W L	7 422	Moisture-Density Relationship
Sieve Size (mm) Passing 3" 75	Sieve Size (mm) Passing	Part	icle Size	%	
Naximum Dry Density (kg/m³): N/A	3" 75			1	
2" 50	2" 50		\ /	- dooming	
1 1/2" 37.5	1 1/2" 37.5	I			
T" 25 3/4" 19 3/8" 9.5 100.0	1" 25 3/4" 19 3/8" 9.5 100.0 No. 4 4.75 100.0 No. 10 2 99.9 No. 40 0.425 99.7 No. 200 0.075 84.1 0.002 54.5 0.005 28.2 0.002 20.4 estimated 0.001 17.1 Plus 3 in. material, not included: 0 (%) Gravel 0.0 0.1 Coarse Sand 0.1 0.2 Medium Sand 0.2 Medium Sand 0.2 California Bearing Ratio California Bearing Ratio Test Not Performed Bearing Ratio (%): N/A Compacted Dry Density (lb/ft³): N/A Compacted Moisture Content (%): N/A				· · · · · · · · · · · · · · · · · · ·
Symbol	Sylvarian 19 3/8" 9.5 100.0 No. 4				Over Size Correction %: N/A
System	System	-			
No. 4	No. 4			100.0	California Bearing Ratio
No. 40	No. 40				
No. 200 0.075 84.1 0.02 54.5 0.005 28.2 0.002 20.4 estimated 0.001 17.1	No. 200 0.075 84.1 Compacted Moisture Content (%): N/A N/A	No. 10	2	99.9	Bearing Ratio (%): N/A
No. 200 0.075 84.1 0.02 54.5 0.005 28.2 0.002 20.4 estimated 0.001 17.1	No. 200 0.075 84.1 Compacted Moisture Content (%): N/A N/A	No. 40	0.425	99.7	Compacted Dry Density (lb/ft ³): N/A
O.005 28.2 O.002 20.4 O.001 17.1 Test Method: ASTM D 854 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.77 Specific Gravity at 20° Celsius: 2.77 O.20 O.1 O.20 O.1 O.20 O.2	O.005 28.2 O.002 20.4 Estimated O.001 17.1 Test Method: ASTM D 854 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.77 Specific Gravity at 20° Celsius: 2.77 Specific Gravity at 20° Celsius: Do. 10 Specific Gravity at 20° Celsius: 2.77 Classification Unified Group Symbol: CL Group Name: Lean clay with sand Classification Classification CL Classification CL CROUP Name: Lean clay with sand CL CROUP Name: CL	No. 200	0.075	84.1	Compacted Moisture Content (%): N/A
O.002 20.4 O.001 17.1 Test Method: ASTM D 854 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.77 O.0	O.002 20.4 Specific Gravity Test Method: ASTM D 854 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.77 Specific Gravity at 20° Celsius: D.0				
estimated 0.001 17.1 Plus 3 in. material, not included: 0 (%) Particle Size: No. 10 Range (%) (%) ASTM AASHTO Range (%) (%) Gravel 0.0 0.1 Classification Coarse Sand 0.1 0.2 Medium Sand 0.2 Fine Sand 15.6 15.6 Silt 55.9 63.7	estimated 0.001 17.1 Plus 3 in. material, not included: 0 (%) Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.77 Range (%) Gravel 0.0 Coarse Sand 0.1 Medium Sand 0.2 Medium Sand 0.2 Group Name: Lean clay with sand				
Prepared: Dry Plus 3 in. material, not included: 0 (%) Range (%) (%) Gravel 0.0 0.1 Coarse Sand 0.1 0.2 Medium Sand 0.2 Fine Sand 15.6 15.6 Silt 55.9 63.7 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.77 Classification Unified Group Symbol: CL Group Name: Lean clay with sand	Plus 3 in. material, not included: 0 (%) ASTM AASHTO Range (%) (%) Gravel 0.0 0.1 Coarse Sand 0.1 0.2 Medium Sand 0.2 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.77 Classification Unified Group Symbol: CL Group Name: Lean clay with sand				——————————————————————————————————————
Plus 3 in. material, not included: 0 (%) ASTM AASHTO Range (%) (%) Gravel 0.0 0.1 Coarse Sand 0.1 0.2 Medium Sand 0.2 Fine Sand 15.6 15.6 Silt 55.9 63.7	Plus 3 in. material, not included: 0 (%) ASTM AASHTO Range (%) (%) Gravel 0.0 0.1 Coarse Sand 0.1 0.2 Medium Sand 0.2 Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.77 Classification Unified Group Symbol: CL Group Name: Lean clay with sand	estimated	0.001	17.1	
Specific Gravity at 20° Celsius: 2.77	ASTM AASHTO Range (%) (%) Gravel 0.0 0.1 Coarse Sand 0.1 0.2 Medium Sand 0.2 Specific Gravity at 20° Celsius: 2.77 Specific Gravity at 20° Celsius: 2.77 Classification Unified Group Symbol: CL Group Name: Lean clay with sand	Dluc 2 in m	storial not includ	od: 0 (%)	
ASTM AASHTO (%) (%) (%) Gravel 0.0 0.1 Coarse Sand 0.1 0.2 Medium Sand 0.2 Fine Sand 15.6 15.6 Silt 55.9 63.7 Group Name:	ASTM AASHTO Range (%) (%)	Fius 3 III. IIId	ateriai, not includ	eu. 0 (/6)	
Range (%) (%) Gravel 0.0 0.1 Coarse Sand 0.1 0.2 Medium Sand 0.2 Fine Sand 15.6 15.6 Silt 55.9 63.7 Classification Unified Group Symbol: CL Group Name: Lean clay with sand	Range (%) (%) Gravel 0.0 0.1 Coarse Sand 0.1 0.2 Medium Sand 0.2 Group Name: Lean clay with sand		ASTM	AASHTO	Specific dravity at 25 Coloido.
Gravel 0.0 0.1 Coarse Sand 0.1 0.2 Medium Sand 0.2 Fine Sand 15.6 15.6 Silt 55.9 63.7 Classification Unified Group Symbol: CL Group Name: Lean clay with sand	Gravel 0.0 0.1 Coarse Sand 0.1 0.2 Medium Sand 0.2 Group Name: Classification Unified Group Symbol: CL Group Name: Lean clay with sand	Range			
Medium Sand 0.2 Group Name: Lean clay with sand Fine Sand 15.6 15.6 Silt 55.9 63.7	Medium Sand 0.2 Group Name: Lean clay with sand		0.0	` ′	Classification
Fine Sand 15.6 15.6 Silt 55.9 63.7	Medium Sand 0.2 Group Name: Lean clay with sand 15.6 15.6			0.2	
Silt 55.9 63.7	Fine Sand 15.6 15.6				Group Name: Lean clay with sand
					AAGUTO OL WALL
Lolay 28.2 20.4 AASHTO Classification: A-6 (8)	Clay 28.2 20.4 AASHTO Classification: A-6 (8)	L Clay	28.2	20.4	AASHTO Classification: A-6 (8)

Comments: _

Project Name Source AEP - Clifty Creek - West Bottom Ash and Fly Ash Ponds subsurface respect Number 175539022

B-1, 47.5'-49.0', 50.0'-51.5' Lab ID 20

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: ASTM D 422
Prepared using: ASTM D 421

Particle Shape: Angular
Particle Hardness: Hard and Durable

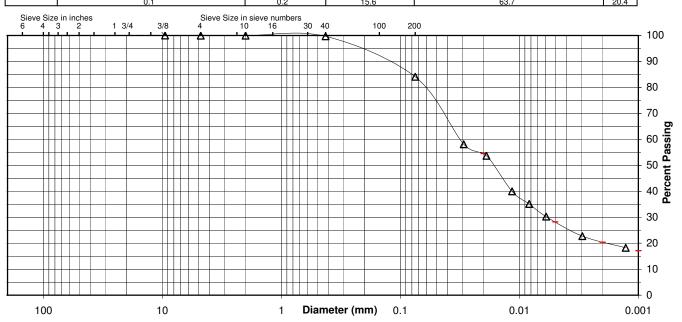
Tested By: KR
Test Date: 11-20-2009
Date Received 11-16-2009

Maximum Particle size: 3/8" Sieve

Sieve Size	% Passing
3"	
2"	
1 1/2"	
1"	
3/4"	
3/8"	100.0
No. 4	100.0
No. 10	99.9

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.77

Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	99.7
No. 200	84.1
0.02 mm	54.5
0.005 mm	28.2
0.002 mm	20.4
0.001 mm	17.1

Particle Size Distribution

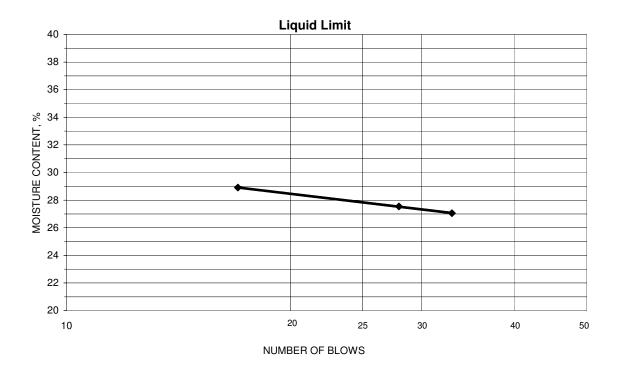
ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay
	0.0	0.0	0.1	0.2	15.6	55.9	28.2
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt	Clav
AASHIO		0.4		0.0	45.0	00.7	00.4

Comments

Reviewed By

Project Source AEP - Clifty Creek - West Bottom Ash and Fly Ash Ponds subsurface ex B-1, 47.5'-49.0', 50.0'-51.5'

Project No. 175539022 Lab ID 20 % + No. 40 0


11-16-2009

Date Received

Tested By Test Date

RG	Test Method	ASTM D 4318 Method A	
11-23-2009	Prepared	Drv	

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
23.68	21.01	11.14	33	27.1	
23.20	20.50	11.16	17	28.9	
23.78	21.05	11.14	28	27.5	28

Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
25.05	23.09	10.96	16.2	16	12
22.52	20.86	10.61	16.2		

Remarks:		
· -	Reviewed By	

Project Name	ΔEP - Clifty Cred	ek - West Botton	n Ash and Fly Ash Ponds Brubject Number17553902	2
	B-2, 32.5'-34.0',		Lab ID 4	
Course	D 2, 02.0 0 1.0 ;	00.0 00.0		<u> </u>
County	Jefferson, IN		Date Received 11-16-0	9
Sample Type			Date Reported 11-30-0	
	<u> </u>			<u> </u>
			Test Results	
Nati	ural Moisture Co	ntent	Atterberg Limits	
Test Method	d: ASTM D 2216		Test Method: ASTM D 4318 Method A	
Moist	ure Content (%):	32.1	Prepared: Dry	
			Liquid Limit: 33	
			Plastic Limit: 15	_
	article Size Analy		Plasticity Index: 18	
· ·	Method: ASTM [Activity Index: 0.90	
	fethod: ASTM D			
Hydrometer	Method: ASTM [0 422		
			Moisture-Density Relationship	
	ticle Size	%	Test Not Performed	
Sieve Siz	e (mm)	Passing	Maximum Dry Density (lb/ft³): N/A	_
3"	75		Maximum Dry Density (kg/m ³): N/A	
2"	50		Optimum Moisture Content (%): N/A	_
1 1/2"	37.5		Over Size Correction %: N/A	_
1"	25			_
3/4"	19			
3/8"	9.5	100.0	California Bearing Ratio	
No. 4	4.75	99.7	Test Not Performed	
No. 10	2	99.7	Bearing Ratio (%): N/A	
No. 40	0.425	98.7	Compacted Dry Density (lb/ft ³): N/A	
No. 200		79.7	Compacted Moisture Content (%): N/A	
	0.02	50.6		
	0.005	28.1		
	0.002	19.7	Specific Gravity	
<u>estimated</u>	0.001	16.0	Test Method: ASTM D 854	
DI O'		1 0 (0()	Prepared: Dry	
Plus 3 in. m	aterial, not includ	ed: 0 (%)	Particle Size: No. 10	_
	ACTM	AACUTO	Specific Gravity at 20° Celsius: 2.72	_
Dange	ASTM	AASHTO		
Range Gravel	(%) 0.3	(%)	Classification	
Coarse Sa		0.3	Unified Group Symbol: CL	
Medium Sa		1.0		<u>_</u>
Fine San		19.0	Group Name: Lean clay with san	<u>u</u>
Silt	51.6	60.0	<u> </u>	_
Clay	28.1	19.7	AASHTO Classification: A-6 (13))
Loidy	20.1	10.7	7. T. C. T. C. Glassification	<u>'</u>

Comments:

Project Name Source AEP - Clifty Creek - West Bottom Ash and Fly Ash Ponds subsurfac@reckpect Number 175539022

B-2, 32.5'-34.0', 35.0'-36.5' Lab ID 43

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: ASTM D 422
Prepared using: ASTM D 421

Particle Shape: Angular
Particle Hardness: Hard and Durable

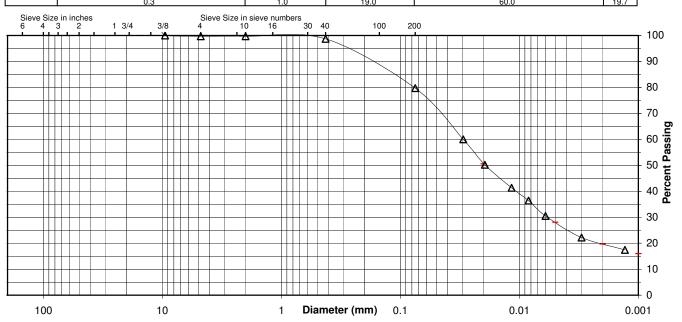
Tested By: KR
Test Date: 11-20-2009
Date Received 11-16-2009

Maximum Particle size: 3/8" Sieve

Sieve Size	% Passing
3"	
2"	
1 1/2"	
1"	
3/4"	
3/8"	100.0
No. 4	99.7
No. 10	99.7

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.72

Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	98.7
No. 200	79.7
0.02 mm	50.6
0.005 mm	28.1
0.002 mm	19.7
0.001 mm	16.0

Particle Size Distribution

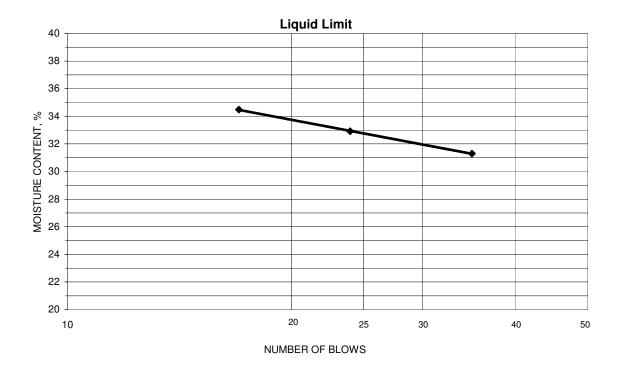
ASTM -	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay
ASTIVI	0.0	0.3	0.0	1.0	19.0	51.6	28.1
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt	Clav
AASHTO		0.0		4.0	40.0	00.0	10.7

Comments

Reviewed By

Project Source AEP - Clifty Creek - West Bottom Ash and Fly Ash Ponds subsurface ex B-2, 32.5'-34.0', 35.0'-36.5'

Project No. 175539022 Lab ID 43 % + No. 40 1


11-16-2009

Date Received

Tested By Test Date

KR	Test Method	ASTM D 4318 Method A
11-23-2009	Prepared	Dry

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
23.26	20.15	11.13	17	34.5	
23.44	20.29	10.72	24	32.9	
24.86	21.58	11.10	35	31.3	33

Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
21.11	19.78	10.98	15.1	15	18
21.07	19.72	10.97	15.4		

Remarks:	
	Reviewed By

	diico		
Project Name	AEP - Clifty Cre	ek - West Botto	om Ash and Fly Ash Ponds Brubject Number 175539022
Source	B-4, 20.0'-21.5',		Lab ID 87
County	Jefferson, IN		Date Received 11-16-09
Sample Type			Date Reported 11-30-09
	<u> </u>	•	
			Test Results
	ural Moisture Co	<u>ntent</u>	Atterberg Limits
	d: ASTM D 2216	00.0	Test Method: ASTM D 4318 Method A
IVIOIST	ure Content (%):	26.6	Prepared: Dry
			Liquid Limit: 25 Plastic Limit: 17
Pá	article Size Anal	vsis	Plasticity Index: 8
	Method: ASTM [Activity Index: 0.40
Gradation N	Method: ASTM D	422	
Hydrometer	Method: ASTM [D 422	
	1'-1- O' -		Moisture-Density Relationship
	ticle Size	%	Test Not Performed
Sieve Siz	, ,	Passing	Maximum Dry Density (lb/ft³): N/A
3"	75		Maximum Dry Density (kg/m³): N/A
2"	50		Optimum Moisture Content (%): N/A
1 1/2"	37.5		Over Size Correction %: N/A
1"	25		
3/4"	19 9.5		California Bearing Ratio
No. 4	4.75	100.0	Test Not Performed
No. 10	2	100.0	Bearing Ratio (%): N/A
No. 40	0.425	99.7	Compacted Dry Density (lb/ft³): N/A
No. 200		80.7	Compacted Moisture Content (%): N/A
	0.02	52.0	
	0.005	27.7	
	0.002	19.5	Specific Gravity
<u>estimated</u>	0.001	15.1	Test Method: ASTM D 854
Plue 3 in m	aterial, not includ	ed: 0 (%)	Prepared: Dry Particle Size: No. 10
1 103 0 111. 111	aterial, not includ	Ca. 0 (70)	Specific Gravity at 20° Celsius: 2.60
	ASTM	AASHTO	
Range	(%)	(%)	
Gravel	0.0	0.0	<u>Classification</u>
Coarse Sa		0.3	Unified Group Symbol: CL
Medium Sa		10.0	Group Name: Lean clay with sand
Fine San Silt	d 19.0 53.0	19.0 61.2	
Clay	27.7	19.5	AASHTO Classification: A-4 (4)
Ciay	21.1	10.0	Andri O diassilication. A-4 (4)

Comments:

Project	Name
Source	

AEP - Clifty Creek - West Bottom Ash and Fly Ash Ponds subsurfac@respect Number 175539022

B-4, 20.0'-21.5', 22.5'-24.0' Lab ID 87

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method:	ASTM D 422
Prepared using:	ASTM D 421

Particle Shape: Angular
Particle Hardness: Hard and Durable

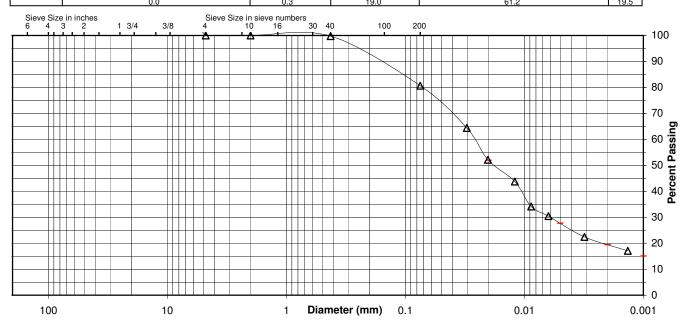
Tested By: KR
Test Date: 11-20-2009
Date Received 11-16-2009

Maximum Particle size: No. 4 Sieve

Sieve Size	% Passing
3"	
2"	
1 1/2"	
1"	
3/4"	
3/8"	
No. 4	100.0
No. 10	100.0

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.6

Dispersed using: Apparatus A - Mechanical, for 1 minute

lo. 40	99.7
o. 200	80.7
2 mm	52.0
05 mm	27.7
02 mm	19.5
01 mm	15.1
	0. 40 0. 200 2 mm 05 mm 02 mm 01 mm

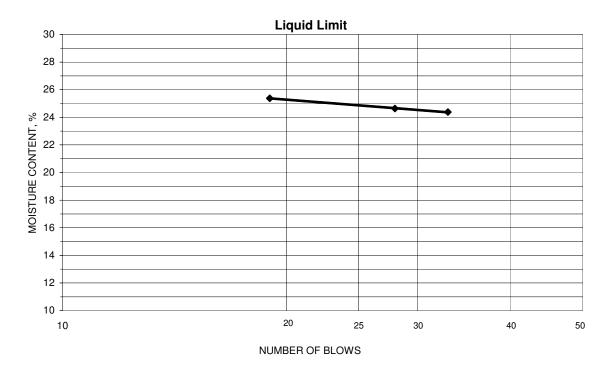
Particle Size Distribution

ASTM -	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay	
ASTIVI	0.0	0.0	0.0	0.3	19.0	53.0	27.7	
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt		Clav
AASHIO		0.0		0.0	40.0	04.0		١,

Comments Reviewed By

Project Source AEP - Clifty Creek - West Bottom Ash and Fly Ash Ponds subsurface ex B-4, 20.0'-21.5', 22.5'-24.0'

Project No. 175539022 Lab ID 87 % + No. 40 0


11-16-2009

Date Received

Tested By Test Date

RG	Test Method	ASTM D 4318 Method A
11-23-2009	Prepared	Dry

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
24.04	21.40	10.57	33	24.4	
23.55	21.04	11.15	19	25.4	
23.10	20.72	11.06	28	24.6	25

Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content	Dia sala Lissaia	Dia akin'ika kada a
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
24.08	22.17	11.08	17.2	17	8
25.29	23.10	10.68	17.6		

Remarks:	
	Reviewed By

Project Name	AEP - Clifty Creek - West Bottom Ash and	l Fly Ash Ponds Brobject Number	175539022
Source	B-4, 57.5'-59.0', 60.0'-61.5'	Lab ID	103
_			
County	Jefferson, IN	Date Received	11-16-09
Sample Type	SPT Comp	Date Reported	11-30-09

Test Results

Natural Moisture Content

Test Method: ASTM D 2216

Moisture Content (%): 10.9

Particle Size Analysis

Preparation Method: ASTM D 421 Gradation Method: ASTM D 422 Hydrometer Method: ASTM D 422

Particle	Size	%
Sieve Size	(mm)	Passing
3"	75	
2"	50	
1 1/2"	37.5	100.0
1"	25	97.1
3/4"	19	92.5
3/8"	9.5	72.7
No. 4	4.75	46.1
No. 10	2	32.6
No. 40	0.425	13.6
No. 200	0.075	5.7
	0.02	2.9
	0.005	1.5
	0.002	1.1
estimated	0.001	0.9

Plus 3 in. material, not included: 0 (%)

ASTM	AASHTO
(%)	(%)
53.9	67.4
13.5	19.0
19.0	
7.9	7.9
4.2	4.6
1.5	1.1
	(%) 53.9 13.5 19.0 7.9 4.2

<u> Atterberg Limits</u>				
Test Method: ASTM D 4318 Method A				
Prepared: Dry				
Liquid Limit:				
Plastic Limit:	Non Plastic			
Plasticity Index:				
Activity Index:	N/A			
-				

Moisture-Density Relationship			
Test Not Performed			
Maximum Dry Density (lb/ft3):	N/A		
Maximum Dry Density (kg/m ³):	N/A		
Optimum Moisture Content (%):	N/A		
Over Size Correction %:	N/A		
	_		

California Bearing Ratio				
Test Not Performed				
Bearing Ratio (%):_	N/A			
Compacted Dry Density (lb/ft ³):	N/A			
Compacted Moisture Content (%):	N/A			
_				

Specific Gravity	
Test Method: ASTM D 854	
Prepared: Dry	
Particle Size:	No. 10
Specific Gravity at 20° Celsius:	2.72
-	

	<u>Classification</u>	
	Unified Group Symbol:	GW-GM
Group Name:	Well-graded gravel w	ith silt and sand
P	AASHTO Classification:	A-1-a (1)

Comments:				
-				

Project Name Source AEP - Clifty Creek - West Bottom Ash and Fly Ash Ponds subsurfac@receptor Number 175539022

B-4, 57.5'-59.0', 60.0'-61.5' Lab ID 103

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: ASTM D 422
Prepared using: ASTM D 421

Particle Shape: Angular
Particle Hardness: Hard and Durable

Tested By: KR
Test Date: 11-20-2009
Date Received 11-16-2009

Maximum Particle size: 1 1/2" Sieve

Sieve Size	% Passing
3"	
2"	
1 1/2"	100.0
1"	97.1
3/4"	92.5
3/8"	72.7
No. 4	46.1
No. 10	32.6

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample

Specific Gravity 2.72

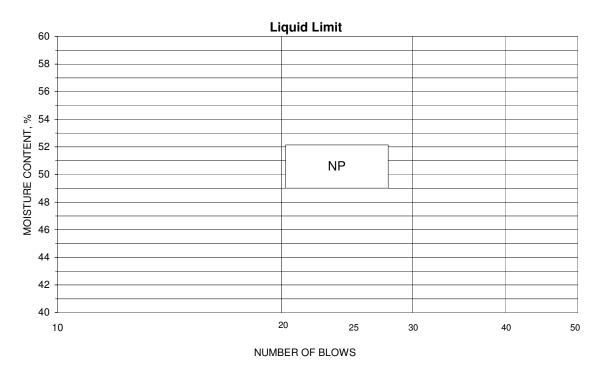
Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	13.6
No. 200	5.7
0.02 mm	2.9
0.005 mm	1.5
0.002 mm	1.1
0.001 mm	0.9

Particle Size Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay
ASTIVI	7.5	46.4	13.5	19.0	7.9	4.2	1.5
AASHTO	,	Gravel		Coarse Sand	Fine Sand	Silt	Clay
AASITIC	′	67.4		19.0	7.9	4.6	1.1

Comments


Reviewed By

Project AEP - Clifty Creek - West Bottom Ash and Fly Ash Ponds subsurface ex Project No. 175539022 Source B-4, 57.5'-59.0', 60.0'-61.5' Lab ID 103 % + No. 40 86 Test Method ASTM D 4318 Method A Tested By RG Date Received 11-16-2009 Test Date 11-23-2009 Prepared Dry

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
					#VALUE!

Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
					#VALUE!

Remarks:		
· -	Reviewed By	

Project Name	AFP - C	lifty Cree	ek - West Bot	tom Ash and Fly Ash Ponds Brubject Number 175539022
Source			57.5'-59.0'	Lab ID 129
		,		
County	Jefferso	n, IN		Date Received 11-16-09
Sample Type	SPT Co	mp		Date Reported 11-30-09
				Test Results
	tural Mois		<u>ntent</u>	Atterberg Limits
Test Metho			24.0	Test Method: ASTM D 4318 Method A
IVIOIS	sture Conte	HIL (70).	24.9	Prepared: Dry Liquid Limit:
				Plastic Limit: Non Plastic
F	Particle Siz	ze Analy	/sis	Plasticity Index:
Preparatio				Activity Index: N/A
Gradation	Method: A	STM D 4	422	
Hydromete	er Method:	ASTM [) 422	
				Moisture-Density Relationship
	article Size		%	Test Not Performed
Sieve S	ize (ı	mm)	Passing	Maximum Dry Density (lb/ft ³): N/A
3"		75		Maximum Dry Density (kg/m³):N/A
2"		50		Optimum Moisture Content (%): N/A
1 1/2"	' (37.5		Over Size Correction %: N/A
1"		25		
3/4"		19		
3/8"		9.5	100.0	California Bearing Ratio
No. 4		1.75	100.0	Test Not Performed
No. 10		2	100.0	Bearing Ratio (%): N/A
No. 40		.425	99.9 54.0	Compacted Dry Density (lb/ft ³): N/A Compacted Moisture Content (%): N/A
100. 20		.075).02	26.2	Compacted Moisture Content (%).
		.005	16.7	
		.002	13.0	Specific Gravity
estimate		.001	10.5	Test Method: ASTM D 854
	•		•	Prepared: Dry
Plus 3 in. r	material, no	ot includ	ed: 0 (%)	Particle Size: No. 10
	-			Specific Gravity at 20° Celsius: 2.74
_		STM	AASHTO	
Range		(%)	(%)	Oleanification
Grave Coarse S		0.0	0.0 0.1	Classification Unified Group Symbol: ML
Medium S		0.0		Group Name: Sandy silt
Fine Sa		15.9	45.9	Januay siit
Silt		37.3	41.0	<u> </u>
Clay		16.7	13.0	AASHTO Classification: A-4 (0)
ı 	•			·

Comments:

Project Name Source AEP - Clifty Creek - West Bottom Ash and Fly Ash Ponds subsurface respect Number 175539022

B-5, 55.0'-56.5', 57.5'-59.0' Lab ID 129

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method: ASTM D 422
Prepared using: ASTM D 421

Particle Shape: Angular
Particle Hardness: Hard and Durable

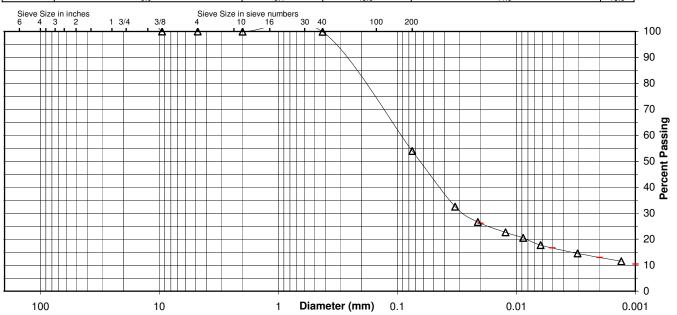
Tested By: KR
Test Date: 11-20-2009
Date Received 11-16-2009

Maximum Particle size: 3/8" Sieve

Sieve Size	% Passing
0.010 0.20	. 4009
3"	
2"	
1 1/2"	
1"	
3/4"	
3/8"	100.0
No. 4	100.0
No. 10	100.0

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on: Total Sample


Specific Gravity 2.74

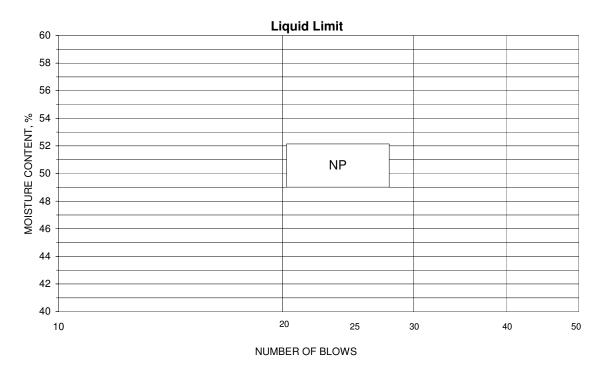
Dispersed using: Apparatus A - Mechanical, for 1 minute

No. 40	99.9
No. 200	54.0
0.02 mm	26.2
0.005 mm	16.7
0.002 mm	13.0
0.001 mm	10.5

Particle Size Distribution

ASTM -	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay	
ASTIVI	0.0	0.0	0.0	0.1	45.9	37.3	16.7	
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt		Clav
AASIIIO		0.0		0.1	45.9	41.0		13.0

Comments


Reviewed By

Project AEP - Clifty Creek - West Bottom Ash and Fly Ash Ponds subsurface ex Project No. 175539022 Source B-5, 55.0'-56.5', 57.5'-59.0' Lab ID 129 % + No. 40 0 Test Method ASTM D 4318 Method A Tested By RG Date Received 11-16-2009 Test Date 11-23-2009 Prepared Dry

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
					#VALUE!

Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
					#VALUE!

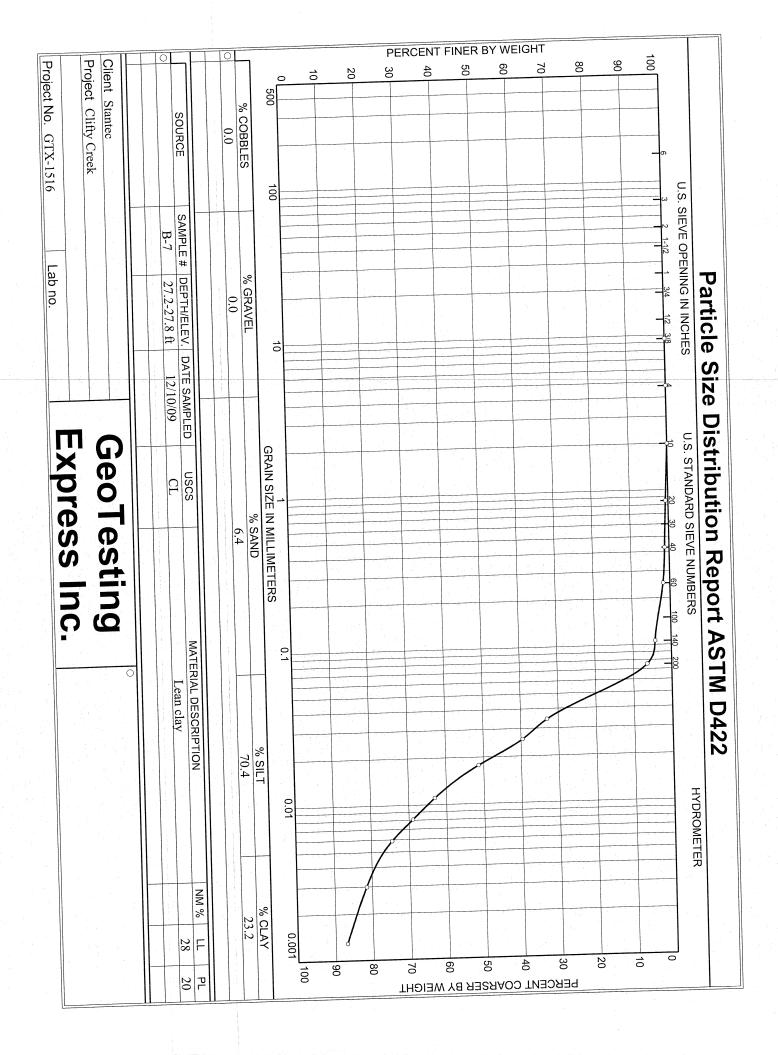
Remarks:			
	F	Reviewed By	

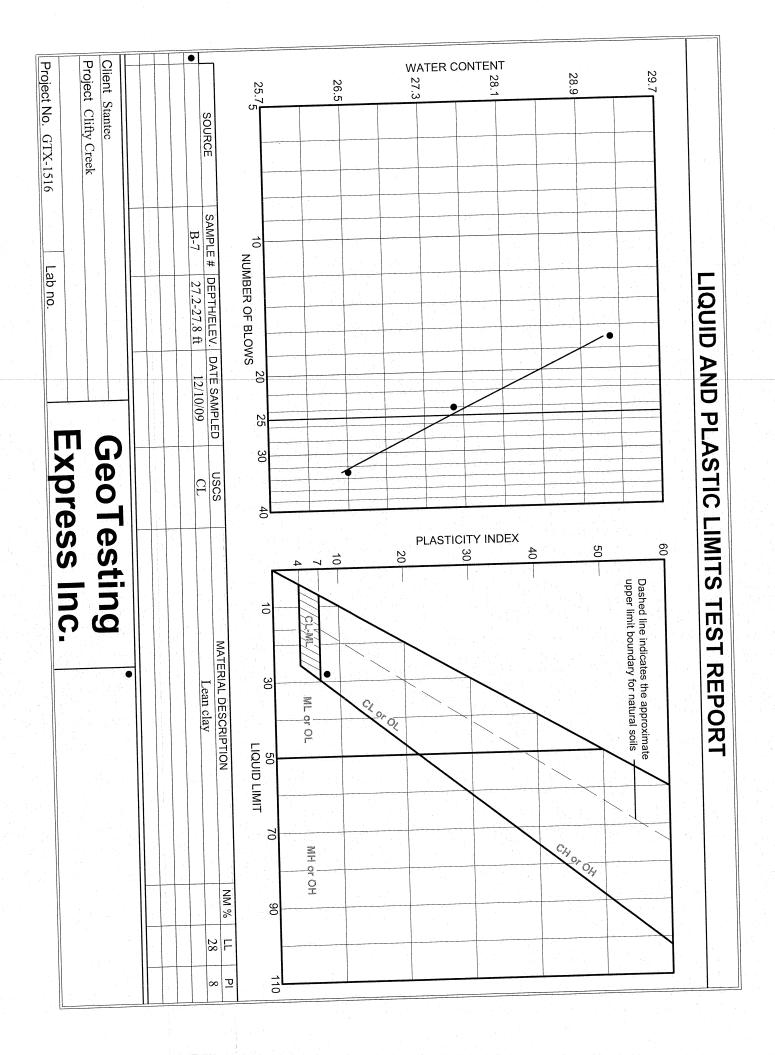
LANDFILL RUNOFF COLLECTION POND: 2009 GEOTECNICAL EXPLORATION

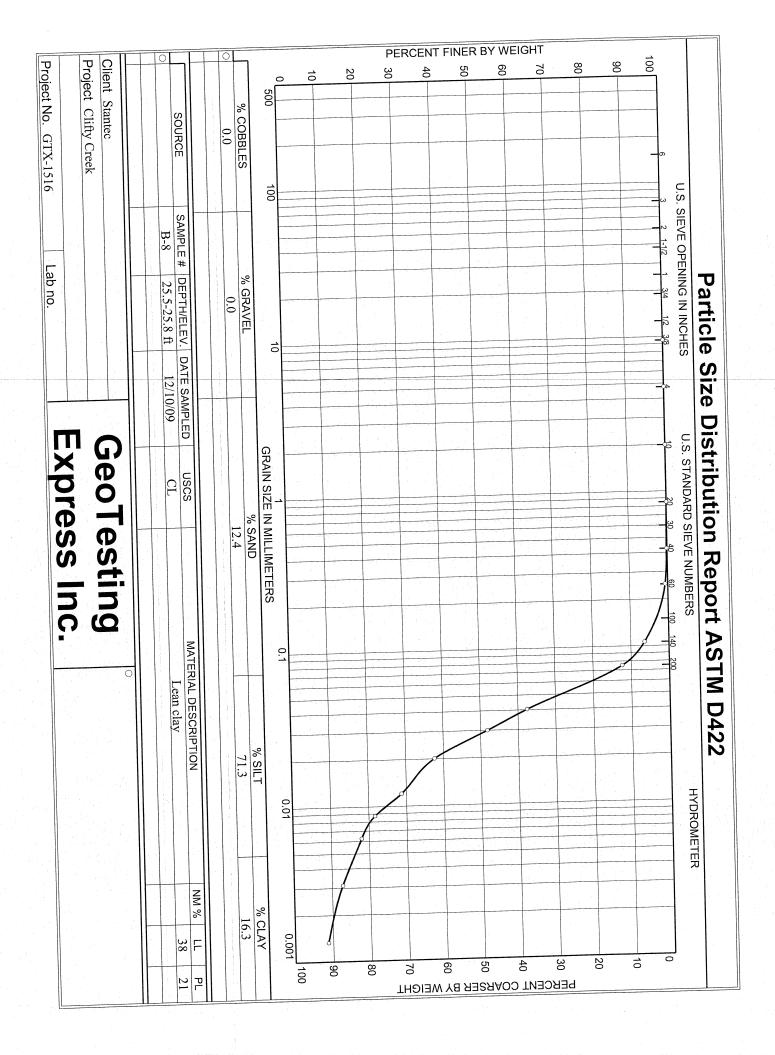
SPECIFIC GRAVITY TEST

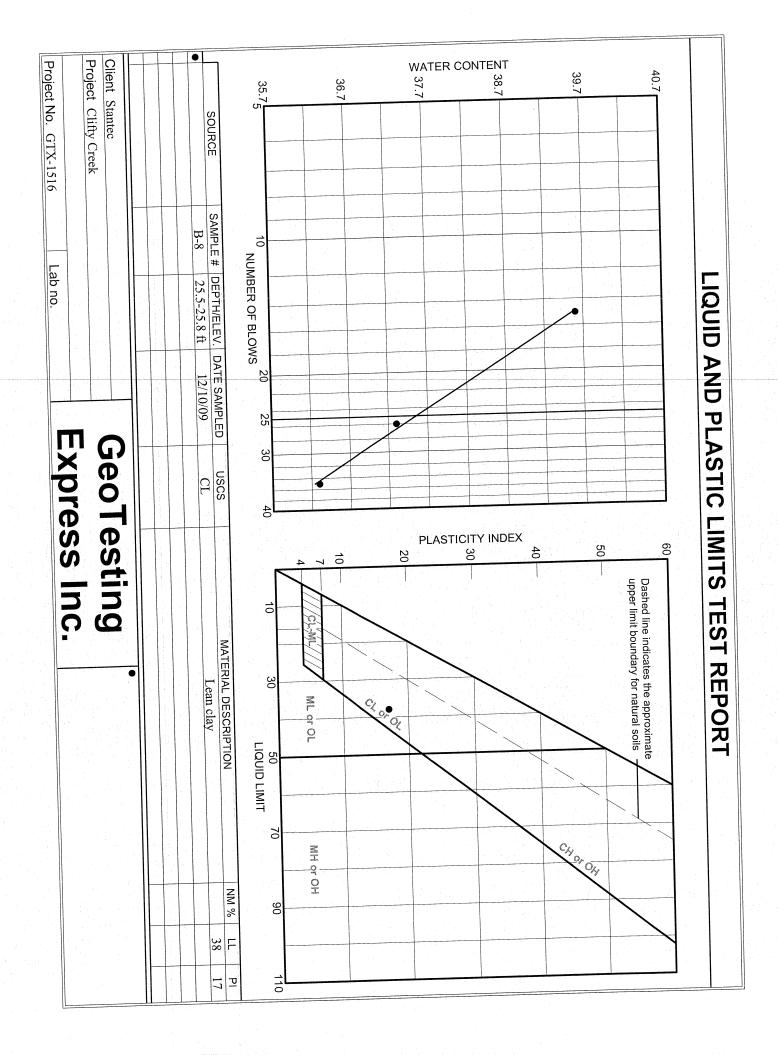
(ASTM D854)

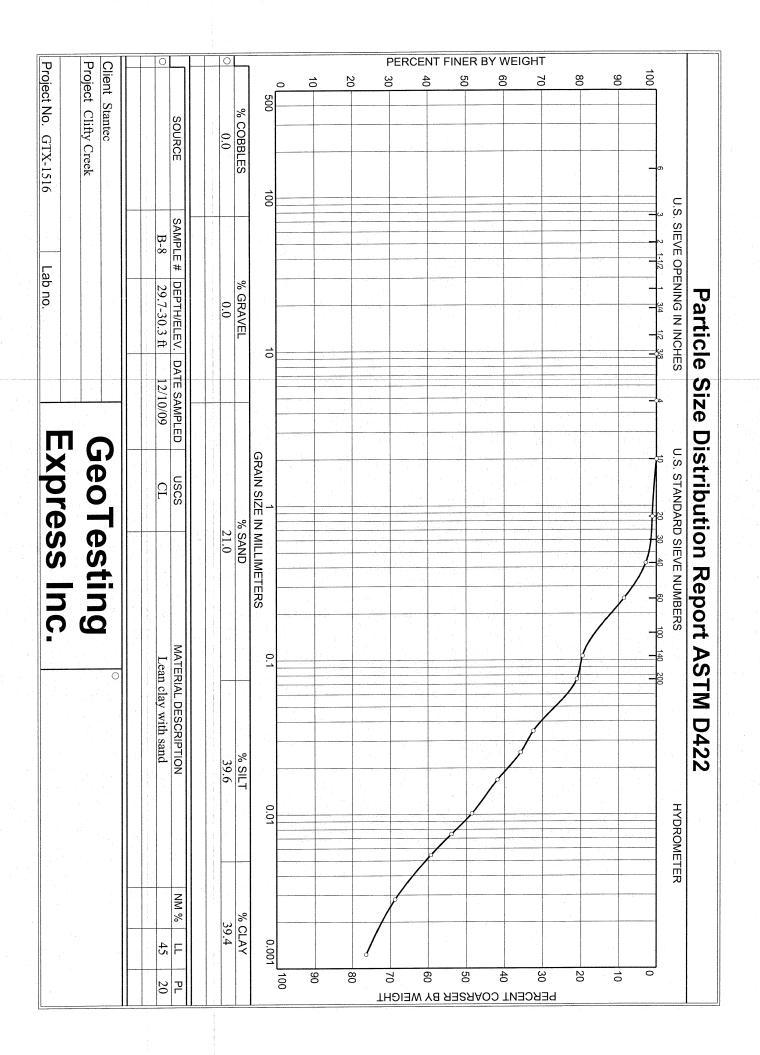
Project No.GTX-1516Tested By JMReviewed By MMProject NameClifty CreekTest Date 12/8/2009Review Date 12/13/2009

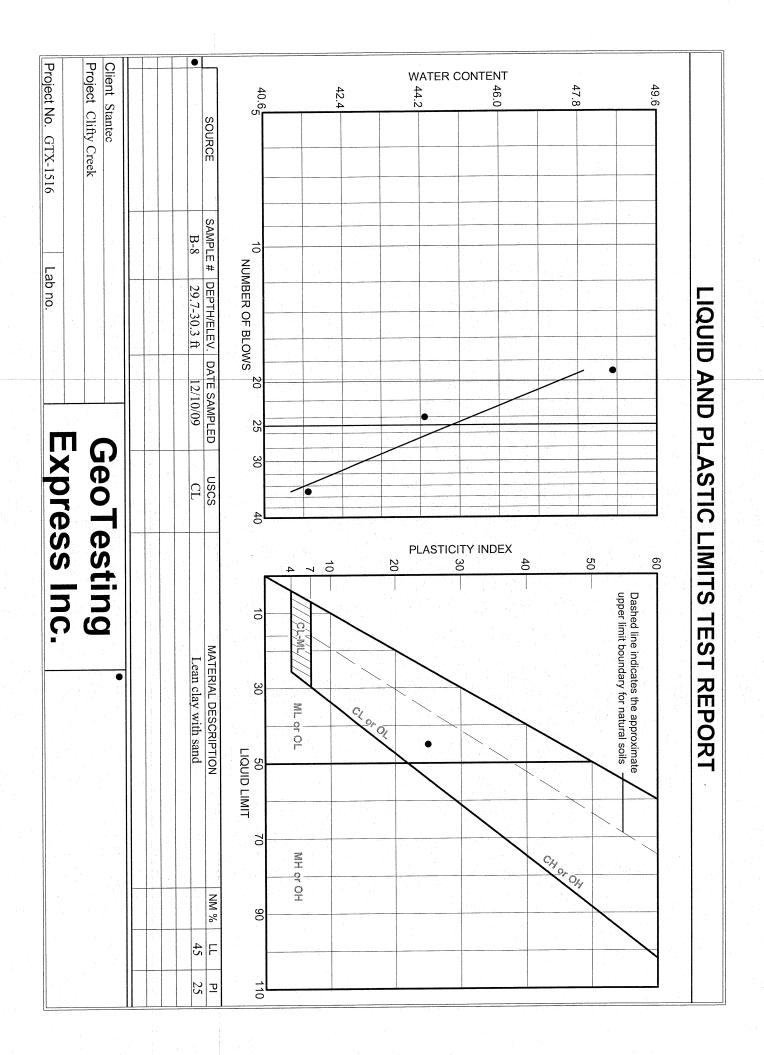

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Boring No.	Depth	Sample No.	Lab No.	Flask No.	Temperature	Weight, WF	Weight, WFS	Weight of Soil	Weight, CWF	Weight, DS	Specific	Specific
	(ft)				(⁰ C)	(grams)	(grams)	(grams)	(grams)	(grams)	Gravity	Gravity
								(8)-(7)			(9)/[(10)-(11)+(9)]	at 20 ⁰ C
B-7	27.2-27.8	-		41	17	304.60	358.10	53.50	433.68	466.86	2.633	2.634
B-8	25.5-25.8	-	İ	33	17	286.35	316.64	30.29	408.76	427.56	2.636	2.638
B-8	29.7-30.3	-		34	18	273.88	322.48	48.60	407.64	437.9	2.650	2.651
B-9	30.2-20.8	-		40	18	303.59	336.38	32.79	437.43	457.84	2.649	2.650
B-10	14.2-14.8	-		29	17	265.69	319.25	53.56	405.05	438.63	2.681	2.682
B-10	16.2-16.8	1	-	29	21	273.96	325.28	51.32	404.86	436.87	2.658	2.657

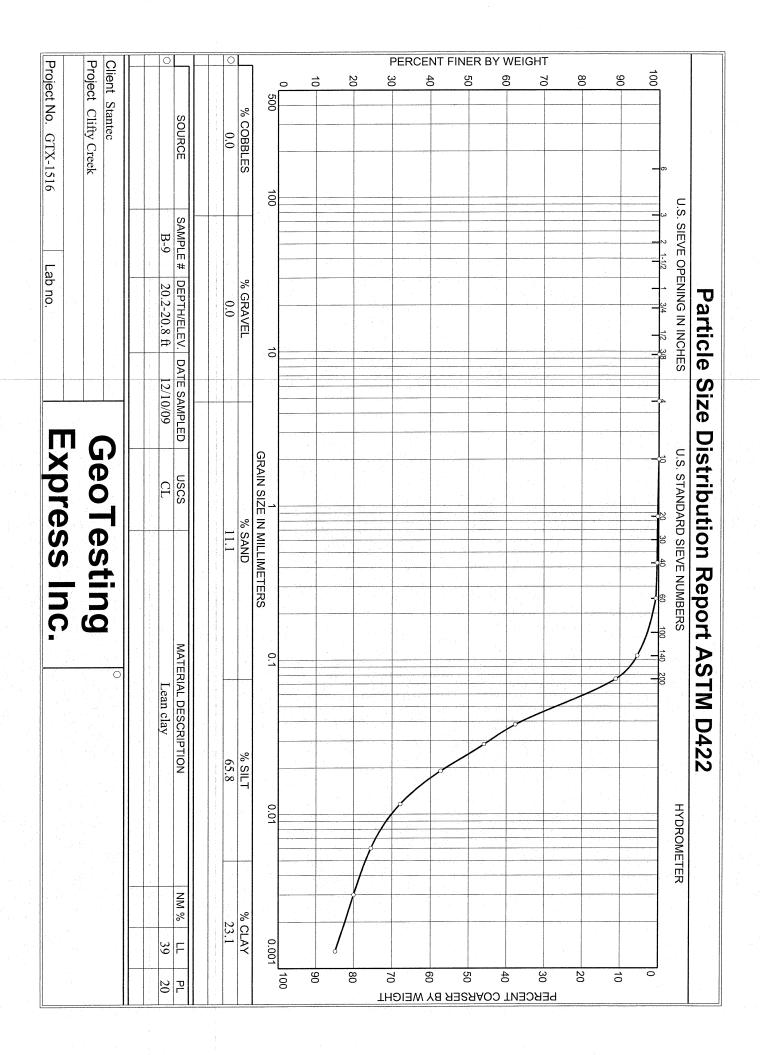

WF - Water and Flask

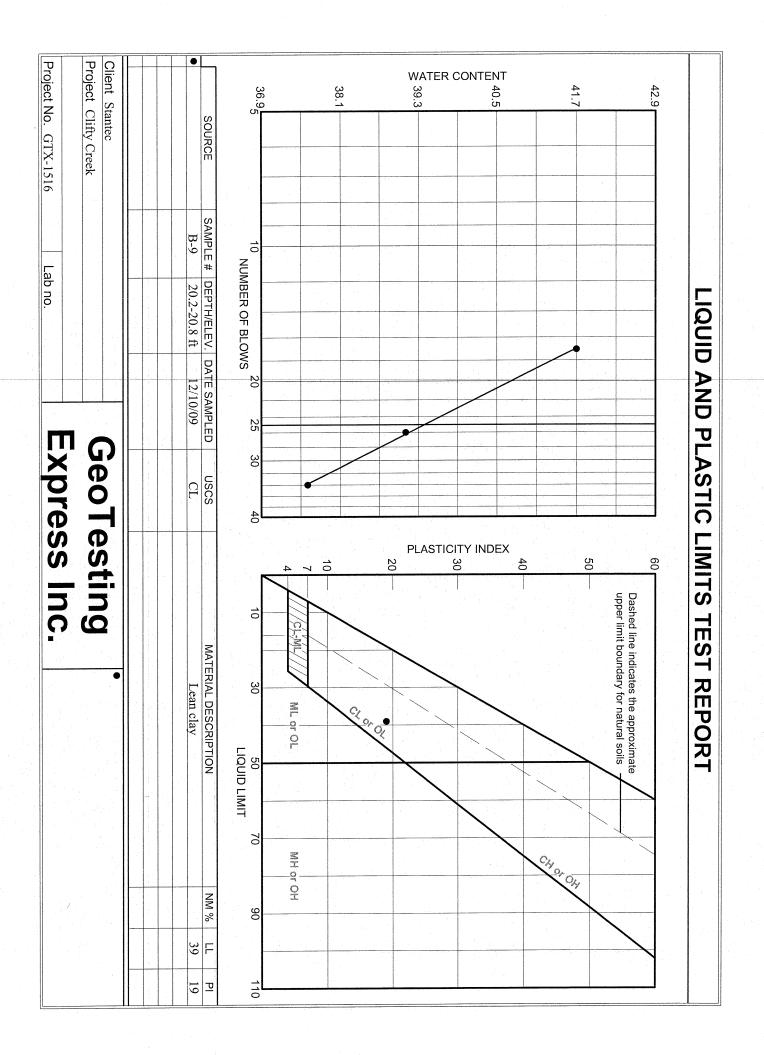

WFS - Water, Flask and Soil

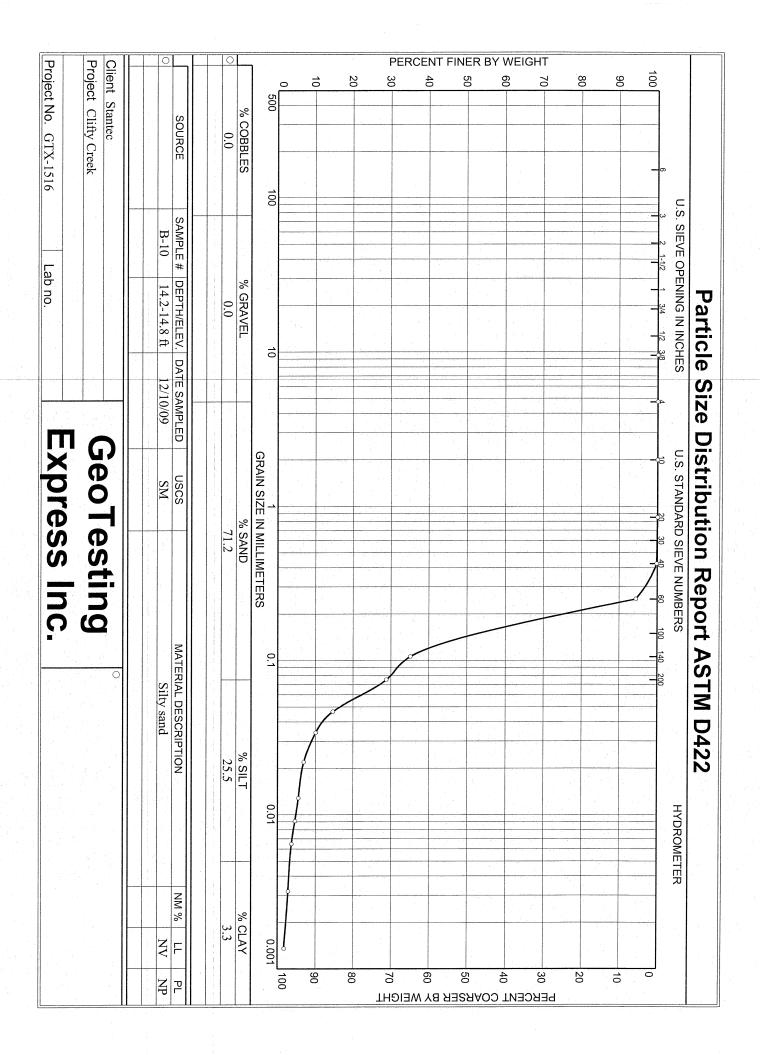

CWF - Calibration Water and Flask

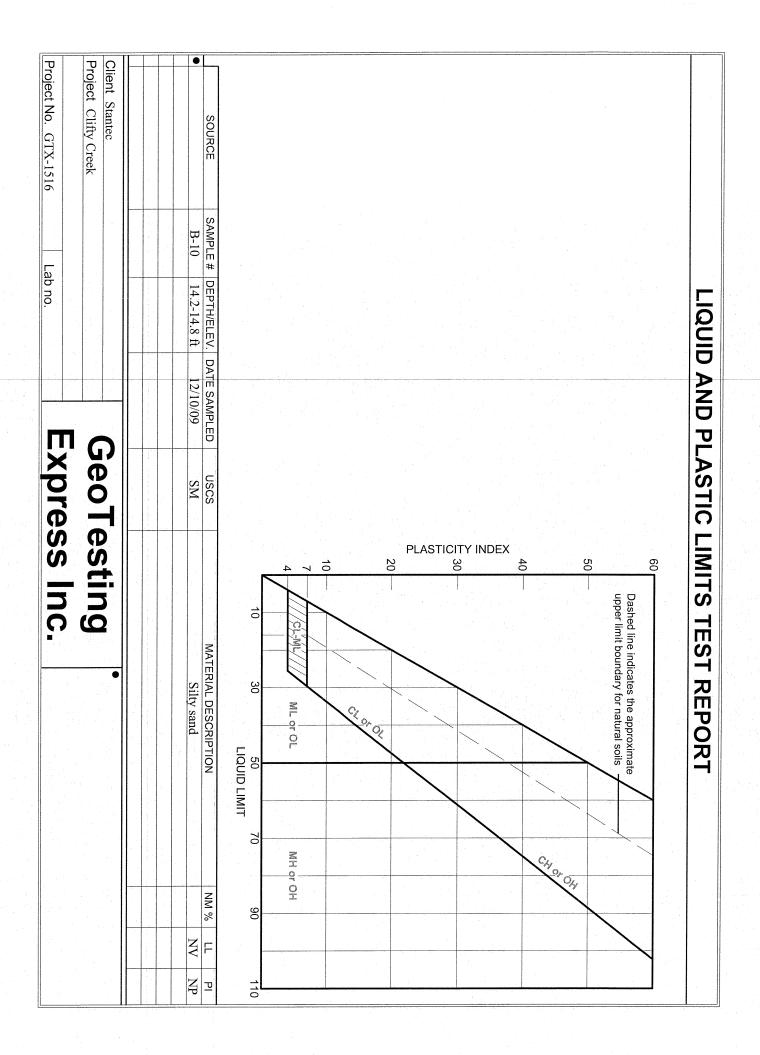

DS - Deaired Sample

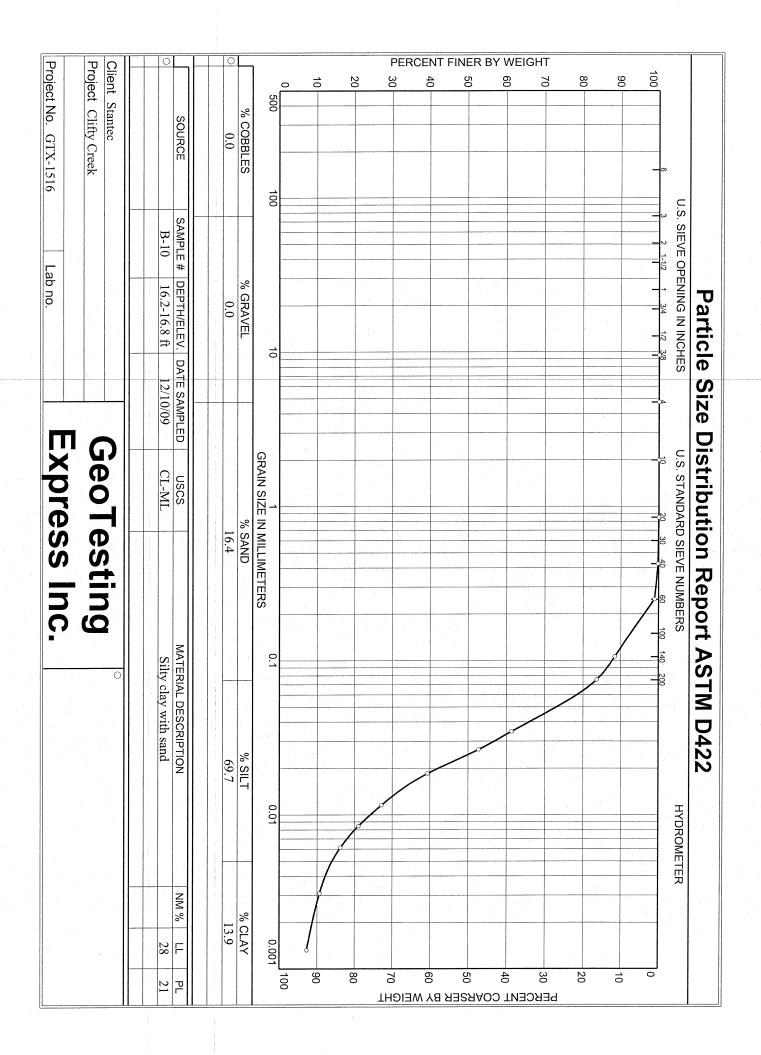


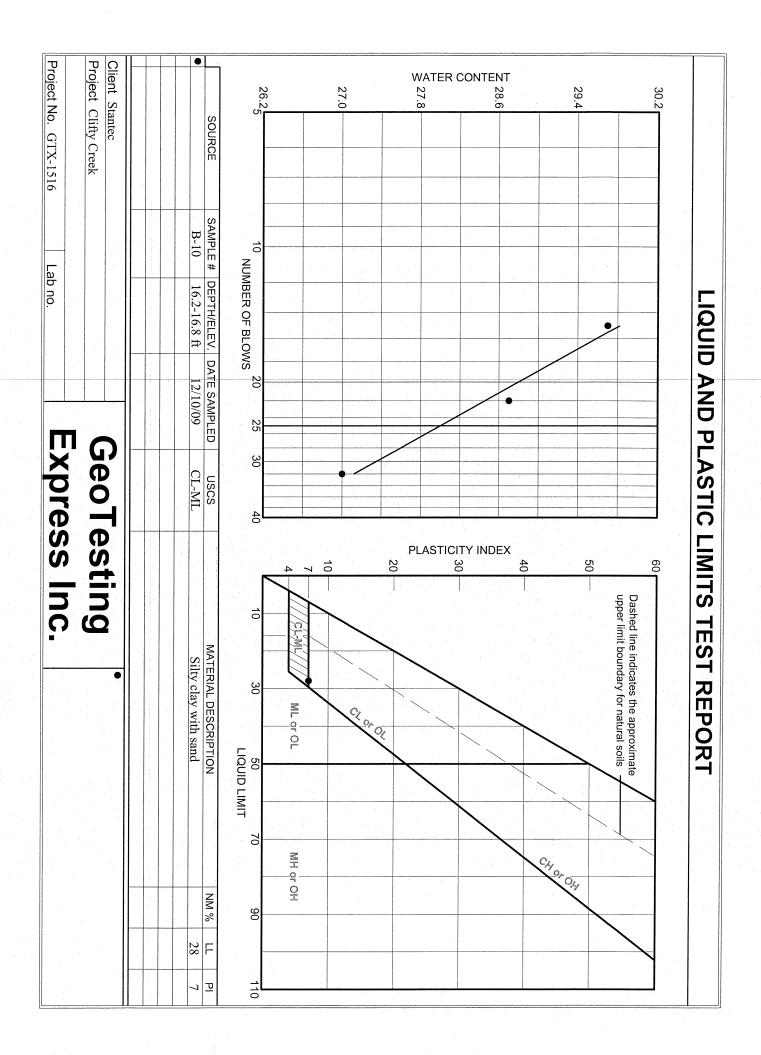












LANDFILL RUNOFF COLLECTION POND: 2015 GEOTECNICAL EXPLORATION

Test Results Test Results		CR Rule - AEF -12, 10.0'-11.5		Project Number Lab ID	17555302
Natural Moisture Content Test Results	<u>-</u>	<u> </u>			
Test Results Atterberg Limits	nple Type S	PT		Date Received	
Natural Moisture Content				Date Reported	8-3-1
Test Method: ASTM D 2216 Moisture Content (%): 23.1				Test Results	
Prepared: Dry	Natura	al Moisture Co	ontent	Atterberg Limits	
Liquid Limit: 21 Plastic Limit: 21 Plastic Limit: 21 Plastic Limit: 21 Plasticity Index: 22 Activity Index: 1.05 Activity I	Γest Method:	ASTM D 2216		Test Method: ASTM D 4318 Method	Α
Particle Size Analysis Plasticity Index: 21 Plasticity Index: 22 Activity Index: 1.05 Activity Index: 1	Moisture	Content (%):	23.1	Prepared: Dry	
Particle Size Analysis Plasticity Index: 22 Activity Index: 1.05				Liquid Limit:	43
Preparation Method: ASTM D 421 Gradation Method: ASTM D 422				Plastic Limit:	21
Particle Size	Part	icle Size Anal	ysis_	Plasticity Index:	22
No. 4	Preparation M	ethod: ASTM I	D 421	Activity Index:	1.05
Particle Size	Gradation Met	thod: ASTM D	422		
Particle Size	Hydrometer M	ethod: ASTM I	D 422		
Sieve Size (mm) Passing N/A N/A N/A N/A N/A N/A Optimum Moisture Content (%): N/A Over Size Correction %: N/A Over Size Correction %	•			Moisture-Density Relation	ship
N/A	Partic	le Size	%		
N/A	Sieve Size	(mm)	Passing	Maximum Dry Density (lh/ft ³):	N/A
N/A		_ ` ′	Jane 9		
N/A					
N/A					
N/A				Over Size Correction %:	N/A
N/A					
No. 4					
No. 10					<u>o</u>
No. 40					
No. 200 0.075 71.7 0.02 54.4 0.005 30.3 0.002 21.1 estimated 0.001 17.0 Test Method: ASTM D 854 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.70 Specific Gravity at 20° Celsius: 2.70 Coarse Sand 25.3 0.6 Medium Sand 0.6 Fine Sand 2.4 2.4 Silt 41.4 50.6 Compacted Moisture Content (%): N/A	No. 10	2	74.7		
O.02 54.4 O.005 30.3 O.002 21.1 Estimated O.001 17.0 Test Method: ASTM D 854 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.70 Specific Gravity at 20° Celsius: 2.70 Classification Unified Group Symbol: CL Group Name: Lean clay with CL Classification CL Cla	No. 40	0.425	74.1	Compacted Dry Density (lb/ft ³):	N/A
O.005 30.3 O.002 21.1 Specific Gravity	No. 200	0.075	71.7	Compacted Moisture Content (%):	N/A
O.002 21.1 O.001 17.0 Test Method: ASTM D 854 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.70 Specific Gravity at 20° Celsius: O.0		0.02	54.4		
estimated 0.001 17.0 Plus 3 in. material, not included: 0 (%) Test Method: ASTM D 854 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.70 Specific Gravity at 20° Celsius: 2.70 Classification Unified Group Symbol: CL Group Name: Lean clay with Fine Sand 2.4 2.4 Silt 41.4 50.6		0.005	30.3		
Plus 3 in. material, not included: 0 (%) ASTM AASHTO Specific Gravity at 20° Celsius: 2.70 Range (%) (%) Gravel 0.0 25.3 Coarse Sand 25.3 0.6 Medium Sand 0.6 Fine Sand 2.4 2.4 Silt 41.4 50.6 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.70 Specific Gravity at 20° Celsius: Classification Unified Group Symbol: CL Group Name: Lean clay with Coarse Sand 2.4 2.4 Silt 41.4 50.6 Classification Classification CL Group Name: Lean clay with Coarse Sand 2.4 2.4 Coa		0.002	21.1	Specific Gravity	
Plus 3 in. material, not included: 0 (%) Specific Gravity at 20° Celsius: Specific Gravity at 20° Celsius: 2.70	estimated	0.001	17.0	Test Method: ASTM D 854	
ASTM AASHTO Range (%) (%) (%) Gravel 0.0 25.3 Coarse Sand 25.3 0.6 Medium Sand 0.6 Fine Sand 2.4 2.4 Silt 41.4 50.6 Specific Gravity at 20° Celsius: 2.70 Classification Unified Group Symbol: CL Group Name: Lean clay with Classification Unified Group Symbol: CL Group Name: Lean clay with Classification Classificatio				Prepared: Dry	
ASTM AASHTO (%) (%) (%)	Plus 3 in. mate	erial, not includ	led: 0 (%)		No. 10
Range (%) (%) Gravel 0.0 25.3 Coarse Sand 25.3 0.6 Medium Sand 0.6 Fine Sand 2.4 2.4 Silt 41.4 50.6 Classification Unified Group Symbol: CL Group Name: Lean clay with				Specific Gravity at 20° Celsius:	2.70
Gravel 0.0 25.3 Coarse Sand 25.3 0.6 Medium Sand 0.6 Fine Sand 2.4 2.4 Silt 41.4 50.6 Classification Unified Group Symbol: CL Group Name: Lean clay with		ASTM	AASHTO		
Coarse Sand 25.3 0.6 Medium Sand 0.6 Fine Sand 2.4 2.4 Silt 41.4 50.6 Unified Group Symbol: CL Group Name: Lean clay with	Range	(%)	(%)		
Medium Sand 0.6 Group Name: Lean clay with Fine Sand 2.4 2.4 Silt 41.4 50.6	Gravel	0.0	25.3		
Medium Sand 0.6 Group Name: Lean clay with Fine Sand 2.4 2.4 Silt 41.4 50.6	Coarse Sand	25.3	0.6	Unified Group Symbol:	CL
Fine Sand 2.4 2.4 Silt 41.4 50.6	Medium Sand	0.6			
	Fine Sand	2.4	2.4		
Clay 30.3 21.1 AASHTO Classification: A-7-6	Silt	41.4	50.6		
	Clay	30.3	21.1	AASHTO Classification:	A-7-6 (15)

Particle-Size Analysis of Soils

ASTM D 422

Project Name	CCR Rule - AEP Clifty Creek	Project Number	175553022
Source	B-12, 10.0'-11.5'	Lab ID	3

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method ASTM D 422
Prepared using ASTM D 421

Particle Shape Angular
Particle Hardness: Hard and Durable

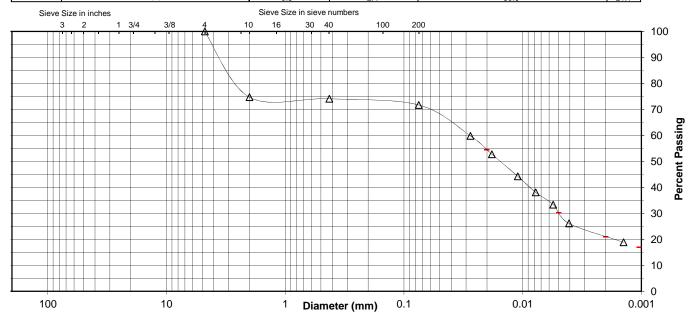
Tested By JS
Test Date 07-24-2015
Date Received 07-21-2015

Maximum Particle size: No. 4 Sieve

Sieve Size	% Passing
No. 4	400.0
No. 4	100.0
No. 10	74.7

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on -3 inch fraction only


Specific Gravity 2.7

Dispersed using Apparatus A - Mechanical, for 1 minute

No. 40	74.1		
No. 200	71.7		
0.02 mm	54.4		
0.005 mm	30.3		
0.002 mm	21.1		
0.001 mm	17.0		

Particle Size Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay	
ASTIVI	0.0 0.0 25.3			0.6	2.4	41.4	30.3	
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt		Clav
AASHIU		25.3	·	0.6	2.4	50.6		21.1

Comments

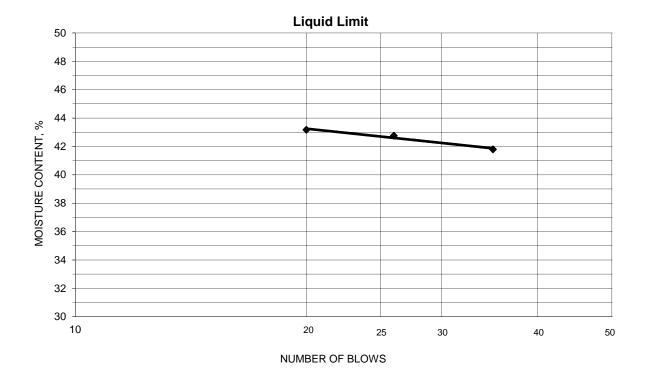
Reviewed By_

07-27-2015

Test Date

ATTERBERG LIMITS

 Project
 CCR Rule - AEP Clifty Creek
 Project No.
 175553022


 Source
 B-12, 10.0'-11.5'
 Lab ID
 3

 W + No. 40
 26

 Tested By
 kws
 Test Method ASTM D 4318 Method A
 Date Received
 07-21-2015

Prepared Dry

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
19.52	17.10	11.31	35	41.8	
18.33	16.09	10.85	26	42.7	
19.57	17.04	11.18	20	43.2	43

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
18.01	16.88	11.47	20.9	21	22
17.57	16.44	11.11	21.2		

Remarks: ______ Reviewed By ______

oject Name ource	B-12, 30.0'-31.5		Project Number 175553022 Lab ID 7			
ample Type	SPT		Date Received 7-21-15			
			Date Reported 8-3-15			
			Test Results			
Nat	ural Moisture Co	ontent	Atterberg Limits			
	d: ASTM D 2216		Test Method: ASTM D 4318 Method A Prepared: Dry			
Moist	ure Content (%):	19.0				
			Liquid Limit: 31			
			Plastic Limit: 18			
	article Size Anal		Plasticity Index:13			
•	Method: ASTM I		Activity Index: 0.87			
	Method: ASTM D					
Hydrometei	Method: ASTM	D 422	Maintain Baratta Balatian al la			
Des	4:-1- O:	0/	Moisture-Density Relationship			
	ticle Size	<u></u> %	Test Not Performed			
Sieve Siz	()	Passing	Maximum Dry Density (lb/ft³): N/A			
	N/A		Maximum Dry Density (kg/m³): N/A			
	N/A		Optimum Moisture Content (%): N/A			
	N/A		Over Size Correction %: N/A			
	N/A					
3/4"	19	100.0				
3/8"	9.5	99.8	California Bearing Ratio			
No. 4	4.75	89.2	Test Not Performed			
No. 10	2	77.8	Bearing Ratio (%): N/A			
No. 40	0.425	77.3	Compacted Dry Density (lb/ft ³): N/A			
No. 200	0.075	71.4	Compacted Moisture Content (%): N/A			
	0.02	42.9				
	0.005	21.6				
_	0.002	15.2	Specific Gravity			
estimated	0.001	12.0	Test Method: ASTM D 854			
DI - O'-		L. I. O. (0/.)	Prepared: Dry			
Plus 3 in. m	aterial, not includ	ied: 0 (%)	Particle Size: No. 10			
	A CTM	AACUTO	Specific Gravity at 20° Celsius: 2.68			
Panga	ASTM (%)	AASHTO				
Range Gravel	10.8	(%) 22.2	Classification			
Coarse Sa		0.5	Unified Group Symbol: CL			
Medium Sa		0.5	Group Name: Lean clay with sand			
Fine San		5.9				
Silt	49.8	56.2				
Clay	21.6	15.2	AASHTO Classification: A-6 (7)			
Ciay	21.0	10.2	A-0 (1)			

Particle-Size Analysis of Soils

ASTM D 422

Project Name	CCR Rule - AEP Clifty Creek	Project Number	175553022
Source	B-12, 30.0'-31.5'	Lab ID	7

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method ASTM D 422
Prepared using ASTM D 421

Particle Shape Angular
Particle Hardness: Hard and Durable

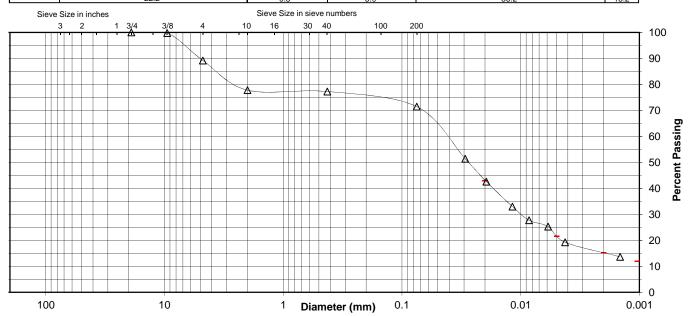
Tested By JS
Test Date 07-24-2015
Date Received 07-21-2015

Maximum Particle size: 3/4" Sieve

Sieve	%
Size	Passing
3/4"	100.0
3/8"	99.8
No. 4	89.2
No. 10	77.8

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on -3 inch fraction only


Specific Gravity 2.68

Dispersed using Apparatus A - Mechanical, for 1 minute

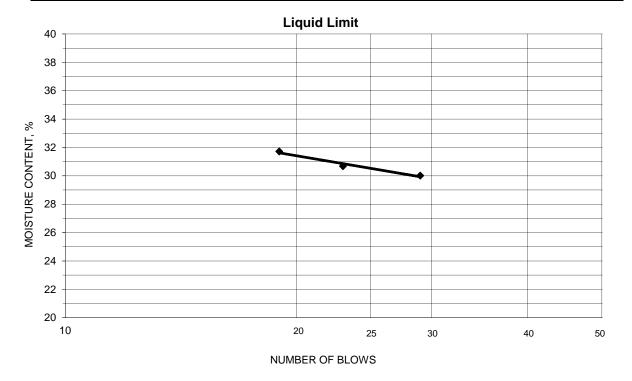
No. 40	77.3		
No. 200	71.4		
0.02 mm	42.9		
0.005 mm	21.6		
0.002 mm	15.2		
0.001 mm	12.0		

Particle Size Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay	
	0.0	10.8	11.4	0.5	5.9	49.8	21.6	
AASHTO	Gravel			Coarse Sand	Fine Sand	Silt		Clav
	22.2			0.5	5.9	56.2		15.2

Comments

Reviewed By_



ATTERBERG LIMITS

Project Project No. 175553022 CCR Rule - AEP Clifty Creek Lab ID Source B-12, 30.0'-31.5' % + No. 40 Test Method ASTM D 4318 Method A Tested By Date Received 07-21-2015 KG Test Date 07-31-2015 Prepared Dry

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
19.80	17.75	10.92	29	30.0	
19.72	17.68	11.03	23	30.7	
20.84	18.48	11.04	19	31.7	31

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
19.95	18.61	11.11	17.9	18	13
20.10	18.75	11.18	17.8		

Remarks: ______ Reviewed By ______

Summary of Soil Tests

	CCR Rule - AEI		Project Number Lab ID	175553022
ource	B-12, 45.0'-46.5	<u>'</u>	Lab ID	1(
mple Type	SPT		Date Received	7-21-1
· /· <u>-</u>			Date Reported	
			Test Results	
	ral Moisture Co	ontent	Atterberg Limits	
	: ASTM D 2216		Test Method: ASTM D 4318 Method	Α
Moistu	re Content (%):	18.7	Prepared: Dry	
			Liquid Limit:	26
			Plastic Limit:	19
	rticle Size Anal		Plasticity Index:	7
•	Method: ASTM I		Activity Index:	0.64
	ethod: ASTM D			
Hydrometer i	Method: ASTM	J 422	Maistura Dansity Polation	chin
Parti	cle Size	%	Moisture-Density Relation Test Not Performed	<u>isilip</u>
Sieve Size		Passing		N/A
Sieve Size	` '	Passing	Maximum Dry Density (lb/ft ³):	
	N/A		Maximum Dry Density (kg/m³):	
	N/A		Optimum Moisture Content (%):	
	N/A		Over Size Correction %:	N/A
	N/A			
	N/A			
	N/A		California Bearing Rati	<u>io</u>
No. 4	4.75	100.0	Test Not Performed	
No. 10	2	99.3	Bearing Ratio (%):	
No. 40	0.425	99.2	Compacted Dry Density (lb/ft ³):	
No. 200	0.075	82.2	Compacted Moisture Content (%):	N/A
	0.02	34.0		
	0.005	14.0		
	0.002	10.7	Specific Gravity	
estimated	0.001	10.0	Test Method: ASTM D 854	
DI - O'-		L. I. O. (0/.)	Prepared: Dry	NI: 40
Plus 3 in. ma	terial, not includ	ied: 0 (%)	Particle Size:	
	ACTM	AACHTO	Specific Gravity at 20° Celsius:	2.12
Dongo	ASTM	AASHTO		
Range Gravel	(%)	0.7	Classification	
Coarse San	0.0 nd 0.7	0.7	Unified Group Symbol:	CL-ML
Medium Sar				
Fine Sand		17.0	Group Name: Silty of	Jiay Willi Sail
Silt	68.2	71.5		
	14.0	10.7	AASHTO Classification:	Δ-4(4)
('121/	14.0	10.7	AASITI O Classification.	Λ-4 (+)
Clay				

Particle-Size Analysis of Soils

ASTM D 422

Project Name	CCR Rule - AEP Clifty Creek	Project Number	175553022
Source	B-12, 45.0'-46.5'	Lab ID	10

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method ASTM D 422
Prepared using ASTM D 421

Particle Shape Angular
Particle Hardness: Hard and Durable

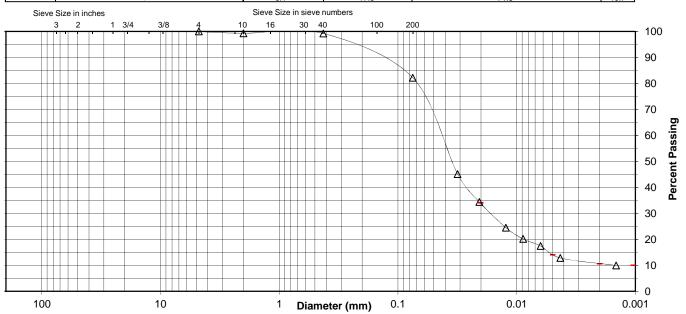
Tested By JS
Test Date 07-24-2015
Date Received 07-21-2015

Maximum Particle size: No. 4 Sieve

Sieve Size	% Passing
No. 4	100.0
No. 10	99.3
140. 10	55.5

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on -3 inch fraction only


Specific Gravity 2.72

Dispersed using Apparatus A - Mechanical, for 1 minute

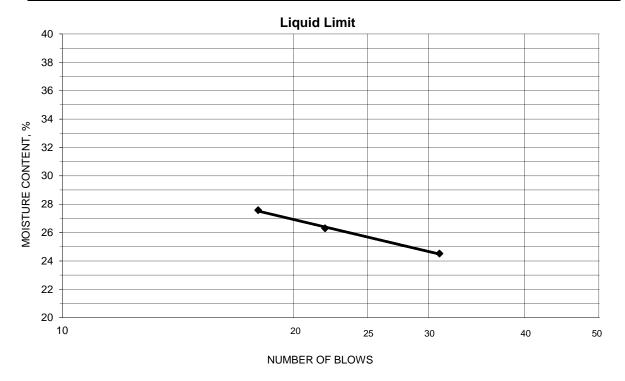
No. 40	99.2
No. 200	82.2
0.02 mm	34.0
0.005 mm	14.0
0.002 mm	10.7
0.001 mm	10.0

Particle Size Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay	
ASTIVI	0.0	0.0	0.7	0.1	17.0	68.2	14.0	
AASHTO	Gravel		Coarse Sand	Fine Sand	Silt		Clav	
AASHIO		0.7		0.1	17.0	71.5		10.7

Comments

Reviewed By_



ATTERBERG LIMITS

Project CCR Rule - AEP Clifty Creek Project No. 175553022 Lab ID Source B-12, 45.0'-46.5' % + No. 40 Test Method ASTM D 4318 Method A Tested By Date Received 07-21-2015 TΑ Test Date 07-30-2015 Prepared Dry

Wet Soil and	Dry Soil and				
Tare Mass	Tare Mass	Tare Mass	Number of	Water Content	
(g)	(g)	(g)	Blows	(%)	Liquid Limit
19.13	17.46	11.11	22	26.3	
21.65	19.32	10.87	18	27.6	
22.47	20.32	11.55	31	24.5	26

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
17.45	16.47	11.42	19.4	19	7
17.70	16.74	11.60	18.7		

Remarks:	_	
	Reviewed By	R_{\perp}

Summary of Soil Tests

	CCR Rule - AEI		Project Number	175553022
urce	B-12, 50.0'-51.5	1	Lab ID	11
mala Tura	CDT		Data Reseived	7 04 45
mple Type	371	_	Date Received Date Reported	
			· —	0010
			Test Results	
	ıral Moisture Co	ontent	Atterberg Limits	
	d: ASTM D 2216		Test Method: ASTM D 4318 Method	A k
Moistu	re Content (%):	21.9	Prepared: Dry	ND
			Liquid Limit:	NP
			Plastic Limit:	NP NP
	rticle Size Anal		Plasticity Index:	NP N/A
	Method: ASTM I lethod: ASTM D		Activity Index:	N/A
	Method: ASTM D			
rryurometer	Metriod. ASTM	D 422	Moisture-Density Relation	nshin
Part	icle Size	%	Test Not Performed	iioiiip
Sieve Size		Passing	Maximum Dry Density (lb/ft³):	N/A
OICVC OIZ	N/A	1 4331119		
			Maximum Dry Density (kg/m³):	
	N/A		Optimum Moisture Content (%):	
	N/A		Over Size Correction %:	N/A
	N/A			
	N/A		California Bassina Bat	
	N/A N/A		California Bearing Rate Test Not Performed	110
No. 10	2	100.0	Bearing Ratio (%):	N/A
No. 40	0.425	99.8	Compacted Dry Density (lb/ft³):	N/A N/A
No. 200	0.075 0.02	81.3 29.1	Compacted Moisture Content (%):	IN/A
	0.005	6.3		
	0.003	3.2	Specific Gravity	
estimated	0.002	1.0	Test Method: ASTM D 854	
- Communica	0.001		Prepared: Dry	
Plus 3 in. ma	aterial, not includ	led: 0 (%)	Particle Size:	No. 10
	,	(/	Specific Gravity at 20° Celsius:	2.68
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	0.0	0.0	Classification	
Coarse Sar		0.2	Unified Group Symbol:	
Medium Sa			Group Name:	Silt with sand
Fine Sand		18.5		
Silt	75.0	78.1		
Clay	6.3	3.2	AASHTO Classification:	A-4 (0
			」	

Particle-Size Analysis of Soils

ASTM D 422

Project Name	CCR Rule - AEP Clifty Creek	Project Number	175553022
Source	B-12, 50.0'-51.5'	Lab ID	11

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method	ASTM D 422	
Prepared using	ASTM D 421	

Particle Shape N/A
Particle Hardness: N/A

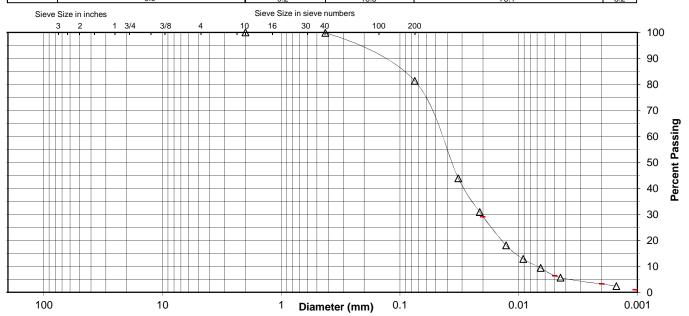
Tested By JS
Test Date 07-24-2015
Date Received 07-21-2015

Maximum Particle size: No. 10 Sieve

Sieve Size	% Passing
0.20	. acomig
N= 40	400.0
No. 10	100.0

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on -3 inch fraction only


Specific Gravity 2.68

Dispersed using Apparatus A - Mechanical, for 1 minute

No. 40	99.8
No. 200	81.3
0.02 mm	29.1
0.005 mm	6.3
0.002 mm	3.2
0.001 mm	1.0

Particle Size Distribution

AST	TN 4	Coarse Gravel Fine Gravel C. Sand		Medium Sand	Fine Sand	Silt	Clay		
ASI	I IVI	0.0 0.0 0.0		0.0	0.2	18.5	75.0	6.3	
AAGL	JTO.	Gravel		Coarse Sand	Fine Sand	Silt		Clav	
AASI	AASHTO Glavei			0.2	18.5	78 1		3.2	

Comments

Reviewed By_

ATTERBERG LIMITS

Project	CCR Rule - AEP Clif	ty Creek			Project No.	175553022
Source	B-12, 50.0'-51.5'				Lab ID	11
				_	% + No. 40	0
Tested By	TA	Test Method	ASTM D 4318 Met	hod A	Date Received	07-21-2015
Test Date	07-30-2015	Prepared	Dry	_		

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index

Reviewed By	Remarks:	<u></u>		
			R	

Summary of Soil Tests

Natural Moisture Content Test Method: ASTM D 2216 Moisture Content (%):	oject Name <u>C</u>			Project Number	175553022
Natural Moisture Content Test Results	urce B	-12, 60.0'-61.5)'	Lab ID	13
Natural Moisture Content Test Method: ASTM D 2216 Moisture Content (%):	mnle Tyne S	PT		Date Received	7-21-1
Natural Moisture Content Test Method: ASTM D 2216 Moisture Content (%):	inpic Type <u>o</u>				
Natural Moisture Content				<u> </u>	
Test Method: ASTM D 2216	Notine	l Maiatura Ca	- mta mt		
Prepared: Dry Liquid Limit: NP			<u>ontent</u>		ΙΔ
Liquid Limit: NP Plastic Limit: NP NP NP NP NP NP NP NP			14.8		
Particle Size Analysis Plasticity Index: NP Plasticity Index: NP Plasticity Index: NP Plasticity Index: NP Activity Index:	Wolstare	Content (70).	14.0		NP
Particle Size Analysis					
Preparation Method: ASTM D 421 Gradation Method: ASTM D 422	Part	icle Size Anal	vsis		
Particle Size					
Particle Size	•				
Particle Size					
Particle Size	,			Moisture-Density Relation	nship
N/A	Partic	le Size	%		
N/A	Sieve Size	(mm)	Passing	Maximum Dry Density (lb/ft ³):	N/A
N/A		` '			
N/A					
N/A				• • • • • • • • • • • • • • • • • • • •	
N/A				Over Size Correction %	IN/A
N/A					
No. 4				California Bearing Pat	io
No. 10	No. 4		100.0		<u>.10</u>
No. 40					N/A
No. 200 0.075 36.1 0.002 12.4 0.005 5.1 0.002 2.8 estimated 0.001 1.0					
O.02					
O.005 S.1 O.002 2.8 estimated O.001 1.0 Plus 3 in. material, not included: 0 (%) Range (%) (%) Gravel O.0 1.5 Coarse Sand 1.5 2.8 Medium Sand 2.8 Fine Sand 59.6 59.6 Silt 31.0 33.3 Specific Gravity Test Method: ASTM D 854 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.75 Classification Unified Group Symbol: SM Group Name: Silty	140. 200			Compacted Moisture Content (76).	IN/A
O.002 2.8 O.001 1.0 Test Method: ASTM D 854 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.75					
estimated 0.001 1.0 Plus 3 in. material, not included: 0 (%) Plus 3 in. material, not included: 0 (%) Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.75 Specific Gravity at 20° Celsius: 2.75 Classification Unified Group Symbol: SM Medium Sand 2.8 Fine Sand 59.6 Silt 31.0 33.3				Specific Gravity	
Plus 3 in. material, not included: 0 (%) Range (%) (%) Gravel 0.0 1.5 Coarse Sand 1.5 2.8 Medium Sand 2.8 Fine Sand 59.6 59.6 Silt 31.0 33.3 Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.75 Classification Unified Group Symbol: SM Group Name: Silty Specific Gravity at 20° Celsius: 2.75 Classification Unified Group Symbol: Silty Specific Gravity at 20° Celsius: 2.75 Classification Unified Group Symbol: Silty Silty Silty Classification Classification Unified Group Symbol: Silty Coarse Sand 1.5 Coarse Sand 1.5	estimated				
Plus 3 in. material, not included: 0 (%) Specific Gravity at 20° Celsius: 2.75		0.00.			
Specific Gravity at 20° Celsius: 2.75	Plus 3 in. mate	erial, not includ	ded: 0 (%)	· · · · · · · · · · · · · · · · · · ·	No. 10
Range (%) (%) Gravel 0.0 1.5 Coarse Sand 1.5 2.8 Medium Sand 2.8 Fine Sand 59.6 59.6 Silt 31.0 33.3 Classification Unified Group Symbol: SM Group Name: Silty		•	()		
Gravel 0.0 1.5 Coarse Sand 1.5 2.8 Medium Sand 2.8 Fine Sand 59.6 59.6 Silt 31.0 33.3 Classification Unified Group Symbol: SM Group Name: Silty		ASTM	AASHTO		
Coarse Sand 1.5 2.8 Medium Sand 2.8 Fine Sand 59.6 59.6 Silt 31.0 33.3 Unified Group Symbol: Silty Group Name: Silty	Range	(%)	(%)		
Medium Sand 2.8 Group Name: Silty Fine Sand 59.6 59.6 Silt 31.0 33.3	Gravel	0.0	1.5	Classification	
Fine Sand 59.6 59.6 Silt 31.0 33.3	Coarse Sand	1.5	2.8	Unified Group Symbol:	SM
Fine Sand 59.6 59.6 Silt 31.0 33.3	Medium Sand	2.8		Group Name:	Silty sand
Silt 31.0 33.3	Fine Sand	59.6	59.6		
Clay 5.1 2.8 AASHTO Classification: A-4	Silt	31.0	33.3		
oldy 6.1 2.0	Clay	5.1	2.8	AASHTO Classification:	A-4 (0

Particle-Size Analysis of Soils

ASTM D 422

Project Name	CCR Rule - AEP Clifty Creek	Project Number	175553022
Source	B-12, 60.0'-61.5'	Lab ID	13

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method ASTM D 422
Prepared using ASTM D 421

Particle Shape Angular
Particle Hardness: Hard and Durable

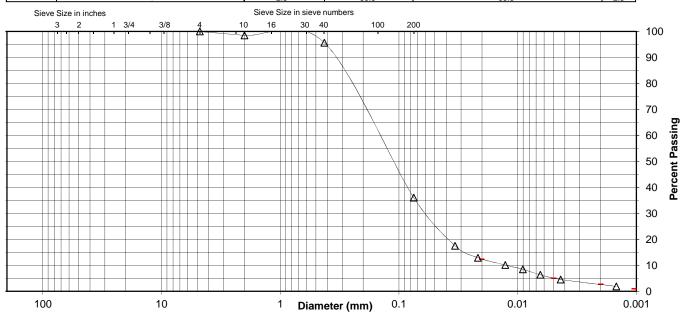
Tested By JS
Test Date 07-24-2015
Date Received 07-21-2015

Maximum Particle size: No. 4 Sieve

Sieve Size	% Passing
No. 4	100.0
No. 10	98.5

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on -3 inch fraction only


Specific Gravity 2.75

Dispersed using Apparatus A - Mechanical, for 1 minute

No. 40	95.7
No. 200	36.1
0.02 mm	12.4
0.005 mm	5.1
0.002 mm	2.8
0.001 mm	1.0

Particle Size Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay
ASTIVI	0.0 0.0		1.5	2.8	59.6	31.0	5.1
AASHTO	Gravel			Coarse Sand	Fine Sand	Silt	Clav
		1.5		2.8	59.6	33.3	2.8

Comments

Reviewed By_

ATTERBERG LIMITS

Project	CCR Rule - AEP Cli	fty Creek			Project No.	175553022
Source	B-12, 60.0'-61.5'				Lab ID	13
					% + No. 40	4
Tested By	DB	Test Method	ASTM D 4318 Me	ethod A	Date Received	07-21-2015
Test Date	07-24-2015	Prepared	Dry		_	

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index

Remarks:			
	Reviewed By	R	

Summary of Soil Tests

oject mame	CCR Rule - AEI	Clifty Creek	Project Number	175553022
ource	B-12, 70.0'-71.5)'	Lab ID	15
ample Type	SPT		Date Received	7-21-15
ampie Type _	01 1		Date Reported	
			Test Results	
	ral Moisture Co	<u>ontent</u>	Atterberg Limits Test Method: ASTM D 4318 Method	1 ^
	: ASTM D 2216 re Content (%):	21.6	Prepared: Dry	I A
เทเบเรเน	re Content (76).	21.0	Liquid Limit:	NP
			Plastic Limit:	
Pai	rticle Size Anal	vsis	Plasticity Index:	
	Method: ASTM		Activity Index:	
	ethod: ASTM D			<u>-</u>
Hydrometer	Method: ASTM	D 422		
_			Moisture-Density Relation	nship
Parti	cle Size	%	Test Not Performed	
Sieve Size	e (mm)	Passing	Maximum Dry Density (lb/ft ³):	N/A
	N/A		Maximum Dry Density (kg/m ³):	N/A
	N/A		Optimum Moisture Content (%):	N/A
	N/A		Over Size Correction %:	N/A
	N/A		_	
	N/A			
	N/A		California Bearing Rat	io
	N/A		Test Not Performed	
No. 10	2	100.0	Bearing Ratio (%):	N/A
No. 40	0.425	98.6	Compacted Dry Density (lb/ft ³):	N/A
No. 200	0.075	56.5	Compacted Moisture Content (%):	
•	0.02	21.7		
	0.005	3.7		
	0.002	1.5	Specific Gravity	
estimated	0.001	1.0	Test Method: ASTM D 854	
5 . 6.		(0.()	Prepared: Dry	
Plus 3 in. ma	aterial, not includ	ded: 0 (%)	Particle Size:	
	ACTM	AACHTO	Specific Gravity at 20° Celsius:	2.71
Range	ASTM (%)	AASHTO (%)		
Gravel	0.0	0.0	Classification	
Coarse San		1.4	Unified Group Symbol:	ML
Medium Sar			Group Name:	
Fine Sand		42.1		
Silt	52.8	55.0		
Clay	3.7	1.5	AASHTO Classification:	A-4 (0
Clay		_		\

Particle-Size Analysis of Soils

ASTM D 422

Project Name	CCR Rule - AEP Clifty Creek	Project Number	175553022
Source	B-12, 70.0'-71.5'	Lab ID	15

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method	ASTM D 422	
Prepared using	ASTM D 421	

Particle Shape N/A
Particle Hardness: N/A

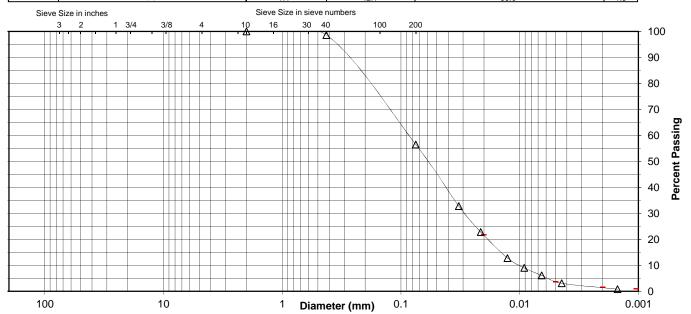
Tested By JS
Test Date 07-24-2015
Date Received 07-21-2015

Maximum Particle size: No. 10 Sieve

Sieve Size	% Passing
No. 10	100.0

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on -3 inch fraction only


Specific Gravity 2.71

Dispersed using Apparatus A - Mechanical, for 1 minute

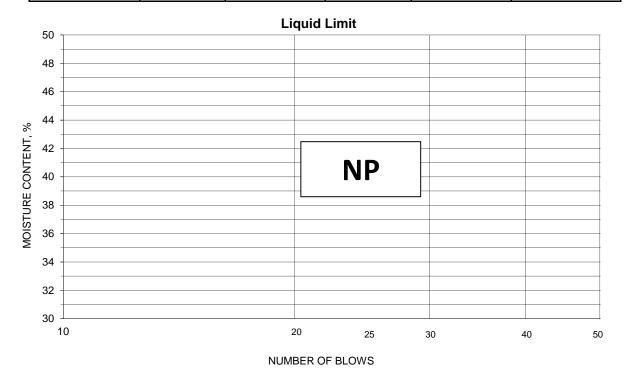
No. 40	98.6
No. 200	56.5
0.02 mm	21.7
0.005 mm	3.7
0.002 mm	1.5
0.001 mm	1.0

Particle Size Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay	
ASTIVI	0.0 0.0		0.0	1.4	42.1	52.8	3.7	
AASHTO	Gravel			Coarse Sand	Fine Sand	Silt	(Clav
		0.0		1.4	42.1	55.0		1.5

Comments _____

Reviewed By_



ATTERBERG LIMITS

Project CCR Rule - AEP Clifty Creek					Project No.	175553022	
Source	B-12, 70.0'-71.5'				Lab ID	15	
					% + No. 40	1	
Tested By	KDG	Test Method	ASTM D 4318 Method	A Da	ate Received	07-21-2015	
Test Date	07-31-2015	Prepared	Dry		_		

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit

PLASTIC LIMIT AND PLASTICITY INDEX

	Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content	Discorded Liberty	Discoulation to the
L	(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index

Remarks:			
	Reviewed By	R	

Summary of Soil Tests

oject Name	CCR Rule - AEI	Clifty Creek	Project Number	175553022
urce	B-12, 80.0'-81.5	j'	Lab ID	17
mple Type	CDT		Date Received	7 21 15
ппріе туре	<u>SF1</u>		Date Received	
			Test Results	
	I ral Moisture Co I: ASTM D 2216	ontent	Atterberg Limits Test Method: ASTM D 4318 Method	J V
		25.7		ı A
IVIOISIU	ire Content (%):	23.7	Prepared: Dry Liquid Limit:	NP
			Plastic Limit:	NP
Pa	rticle Size Anal	veie	Plastic Limit	NP
	Method: ASTM		Activity Index:	N/A
	lethod: ASTM D		Activity index.	1 N/ /\
	Method: ASTM			
. 13 01110101		- 1	Moisture-Density Relation	nship
Part	icle Size	%	Test Not Performed	
Sieve Size		Passing	Maximum Dry Density (lb/ft³):	N/A
0.010 0.20	N/A		Maximum Dry Density (kg/m³):	
	N/A		Optimum Moisture Content (%):	
	N/A		Over Size Correction %:	N/A
	N/A			
	N/A		Oulifornia Boarina Bat	• -
No. 4	N/A	100.0	California Bearing Rat	110
No. 4	4.75	100.0	Test Not Performed	NI/A
No. 10		98.9	Bearing Ratio (%):	
No. 40	0.425	98.9	Compacted Dry Density (lb/ft³):	N/A
No. 200	0.075	90.2	Compacted Moisture Content (%):	N/A
	0.02	28.8		
	0.005	5.6	Our alife Our alife	
001:00-1	0.002	1.4	Specific Gravity Test Method: ASTM D 854	
estimated	0.001	0.0		
Dlue 2 in ma	aterial, not includ	1ad: 0 (%)	Prepared: Dry Particle Size:	No. 10
ı ius sııı. IIId	ateriai, not inclut	16u. U (70)	Specific Gravity at 20° Celsius:	2.73
	ASTM	AASHTO	Specific Gravity at 20 Ceisius.	2.75
Range	(%)	(%)		
Gravel	0.0	1.1	Classification	
Coarse Sar		0.0	Unified Group Symbol:	ML
Medium Sa			Group Name:	
Fine Sand		8.7		Oil
Silt	84.6	88.8		
Clay	5.6	1.4	AASHTO Classification:	A-4 (0
Ciay	0.0		7. (8111 8 Glassification).	71 (0
Comments:			<u> </u>	

Particle-Size Analysis of Soils

ASTM D 422

Project Name	CCR Rule - AEP Clifty Creek	Project Number	175553022
Source	B-12, 80.0'-81.5'	Lab ID	17

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method ASTM D 422
Prepared using ASTM D 421

Particle Shape Angular
Particle Hardness: Hard and Durable

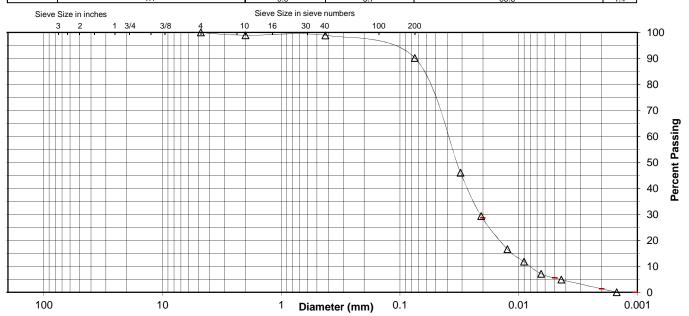
Tested By JS
Test Date 07-24-2015
Date Received 07-21-2015

Maximum Particle size: No. 4 Sieve

Sieve	%
Size	Passing
No. 4	100.0
No. 10	98.9

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on -3 inch fraction only


Specific Gravity 2.73

Dispersed using Apparatus A - Mechanical, for 1 minute

No. 40	98.9
No. 200	90.2
0.02 mm	28.8
0.005 mm	5.6
0.002 mm	1.4
0.001 mm	0.0

Particle Size Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt		,
	0.0	0.0	1.1	0.0	8.7	84.6	5.6	
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt		Clav
		11		0.0	8.7	88.8		14

Comments

Reviewed By_

ATTERBERG LIMITS

Project	CCR Rule - AEP Cli	fty Creek			Project No.	175553022
Source	B-12, 80.0'-81.5'				Lab ID	17
					% + No. 40	1
Tested By	KG	Test Method /	ASTM D 4318 N	Nethod A	Date Received	07-21-2015
Test Date	07-24-2015	Prepared	Dry		_	

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index

Remarks:			
	Reviewed By	R	
		. ,	

Summary of Soil Tests

Test Results Test Method: ASTM D 2216 Moisture Content (%): 23.4 Moisture Content (%): 23.4 Plastic Limit: 19 Plasticity Index: 23 Activity Index: 24 Activity Index: 25 Activity Index: 26 Activity Index: 27 Activity Index: 27 Activity Index: 28 Activity Index: 28 Activity Index: 29 Activity Index: 29 Activity Index: 20 Activity Index:	oject Name ource	CCR Rule - AEF B-12, 95.0'-96.5		Project Number Lab ID	175553022 20
Natural Moisture Content Test Results	buice	D-12, 93.0-90.3			20
Natural Moisture Content	ample Type	SPT		 Date Received	7-21-15
Natural Moisture Content Test Method: ASTM D 2216 Moisture Content (%): 23.4				Date Reported	8-3-15
Test Method: ASTM D 2216				Test Results	
Prepared: Dry	Nati	ural Moisture Co	ontent	Atterberg Limits	
Liquid Limit: 42 Plastic Limit: 19 Particle Size Analysis Preparation Method: ASTM D 421 Gradation Method: ASTM D 422 Hydrometer Method: ASTM D Pensity (lb/ft³): N/A Maximum Dry Density (lb/ft³): N/A Over Size Correction %: N/A	Test Method	d: ASTM D 2216		Test Method: ASTM D 4318 Method	ΙA
Particle Size Analysis	Moist	ure Content (%):	23.4	Prepared: Dry	
Particle Size Analysis Preparation Method: ASTM D 421 Gradation Method: ASTM D 422 Hydrometer Method: ASTM D 422 Moisture-Density Relationship Test Not Performed Maximum Dry Density (lb/ft²): N/A Maximum Dry Density (lb/ft²): N/A Maximum Dry Density (kg/m²): N/A Optimum Moisture Content (%): N/A Over Size Correction %: N/A Over Size				Liquid Limit:	42
Preparation Method: ASTM D 421 Gradation Method: ASTM D 422				Plastic Limit:	19
Particle Size % Sieve Size (mm) Passing Maximum Dry Density (lb/ft²): N/A Maximum Dry Density (kg/m³): N/A Optimum Moisture Content (%): N/A Over Size Correction %: N/A	<u>Pa</u>	article Size Anal	ysis <u> </u>	Plasticity Index:	23
Particle Size	Preparation	Method: ASTM I	D 421	Activity Index:	0.74
Particle Size					
Particle Size	Hydrometer	Method: ASTM	D 422		
Sieve Size (mm) Passing N/A -				<u>ıship</u>	
N/A		1	-1		
N/A	Sieve Siz	e (mm)	Passing	Maximum Dry Density (lb/ft ³):	N/A
N/A		N/A		Maximum Dry Density (kg/m ³):	N/A
N/A		N/A		Optimum Moisture Content (%):	N/A
N/A		N/A		· · · · · · · · · · · · · · · · · · ·	
N/A					
N/A					
No. 4				California Bearing Rat	io
No. 10	No. 4	4.75	100.0		
No. 40				Bearing Ratio (%):	N/A
No. 200 0.075 86.2 0.002 71.6 0.005 43.0 0.002 30.6 0.001 26.0	No. 40	0.425	92 4		
O.02					
O.005					,, .
Specific Gravity Test Method: ASTM D 854 Prepared: Dry					
Plus 3 in. material, not included: 0 (%)				Specific Gravity	
Plus 3 in. material, not included: 0 (%) Range (%) (%) (%) Gravel 0.0 7.1 Coarse Sand 7.1 0.5 Medium Sand 0.5 Fine Sand 6.2 6.2 Silt 43.2 55.6 Clay 43.0 30.6 Comments: Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.68 Classification Unified Group Symbol: CL Group Name: Lean classification: A-7-6 (20 Comments: Comments: A-7-6 (20 Comments: Comments Comments Classification: A-7-6 (20 Comments Comments Comments Classification: A-7-6 (20 Comments Classification: Classification: A-7-6 (20 Comments Classification:	No. 4 No. 10 No. 40 No. 200				
Plus 3 in. material, not included: 0 (%) Particle Size: No. 10				Prepared: Dry	
ASTM AASHTO Range (%) (%) (%) Gravel 0.0 7.1 Coarse Sand 7.1 0.5 Medium Sand 0.5 Fine Sand 6.2 6.2 Silt 43.2 55.6 Clay 43.0 30.6 AASHTO Classification: A-7-6 (20 Comments: A-7	Plus 3 in. m	aterial, not includ	led: 0 (%)	Particle Size:	No. 10
Range (%) (%) Gravel 0.0 7.1 Coarse Sand 7.1 0.5 Medium Sand 0.5 Fine Sand 6.2 6.2 Silt 43.2 55.6 Clay 43.0 30.6 AASHTO Classification: A-7-6 (20				Specific Gravity at 20° Celsius:	2.68
Gravel 0.0 7.1 Coarse Sand 7.1 0.5 Medium Sand 0.5 Fine Sand 6.2 6.2 Silt 43.2 55.6 Clay 43.0 30.6 AASHTO Classification: A-7-6 (20		ASTM	AASHTO		
Coarse Sand 7.1 0.5 Medium Sand 0.5 Fine Sand 6.2 6.2 Silt 43.2 55.6 Clay 43.0 30.6 Unified Group Symbol: Lean classification: A-7-6 (20)	Range	(%)	(%)		
Medium Sand 0.5 Fine Sand 6.2 6.2 Silt 43.2 55.6 Clay 43.0 30.6 Group Name: AASHTO Classification: A-7-6 (20	Gravel	0.0	7.1		
Fine Sand 6.2 6.2 Silt 43.2 55.6 Clay 43.0 30.6 AASHTO Classification: A-7-6 (20			0.5		
Fine Sand 6.2 6.2 Silt 43.2 55.6 Clay 43.0 30.6 AASHTO Classification: A-7-6 (20	Medium Sa	and 0.5		Group Name:	Lean clay
Clay 43.0 30.6 AASHTO Classification: A-7-6 (20 Comments:	Fine San		6.2		
Comments:		43.2	55.6		
	Clay	43.0	30.6	AASHTO Classification:	A-7-6 (20)
Davisous d Davis	Comments:				
				Reviewed By	DI

Particle-Size Analysis of Soils

ASTM D 422

Project Name	CCR Rule - AEP Clifty Creek	Project Number	175553022
Source	B-12, 95.0'-96.5'	Lab ID	20

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method ASTM D 422
Prepared using ASTM D 421

Particle Shape Angular
Particle Hardness: Hard and Durable

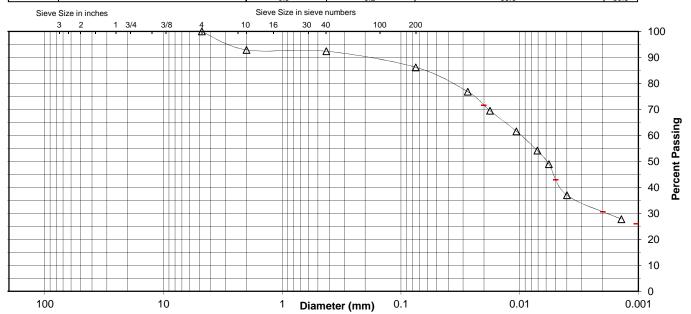
Tested By JS
Test Date 07-24-2015
Date Received 07-21-2015

Maximum Particle size: No. 4 Sieve

Sieve Size	% Passing
No. 4	100.0
No. 10	92.9

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on -3 inch fraction only


Specific Gravity 2.68

Dispersed using Apparatus A - Mechanical, for 1 minute

No. 40	92.4
No. 200	86.2
0.02 mm	71.6
0.005 mm	43.0
0.002 mm	30.6
0.001 mm	26.0

Particle Size Distribution

ASTM	Coarse Gravel Fine Gravel C. Sar		C. Sand	Medium Sand	Fine Sand	Silt	Clay	
ASTIVI	0.0	0.0	7.1	0.5	6.2	43.2	43.0	
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt	C	Clav
AASHTO		7.1	·	0.5	6.2	55.6	3	30.6

Comments

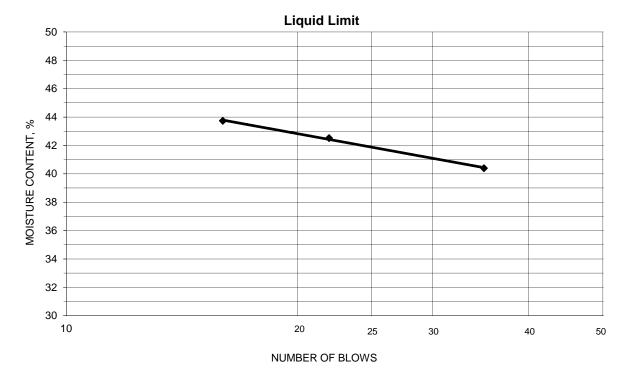
Reviewed By_

07-31-2015

Test Date

ATTERBERG LIMITS

 Project
 CCR Rule - AEP Clifty Creek
 Project No.
 175553022


 Source
 B-12, 95.0'-96.5'
 Lab ID
 20

 W + No. 40
 8

 Tested By
 KDG
 Test Method ASTM D 4318 Method A
 Date Received
 07-21-2015

Prepared Dry

Wet Soil and Tare Mass (g)	Dry Soil and Tare Mass (g)	Tare Mass (g)	Number of Blows	Water Content (%)	Liquid Limit
23.24	19.63	11.14	22	42.5	
20.15	17.36	10.98	16	43.7	
21.03	18.17	11.09	35	40.4	42

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
17.59	16.51	10.80	18.9	19	23
17.15	16.14	10.89	19.2		

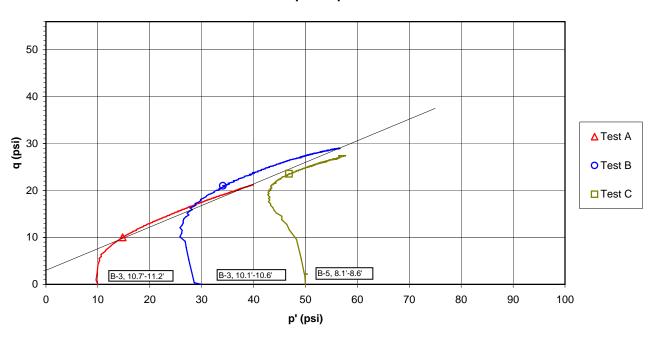
Remarks: ______ Reviewed By ______

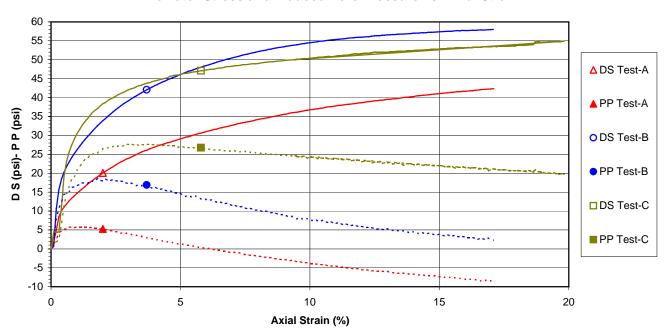
APPENDIX E

CONSOLIDATED-UNDRAINED TRIAXIAL TESTS

Project Sample ID AEP-Clifty Creek-West Bottom and Fly Ash Ponds subsurface exploration

Project No. Test Number 175539022


B-3, 10.7'-11.2' & B-3, 10.1'-10.6' & B-5, 8.1'-8.6'


 $\phi' = 27.4 \text{ deg.}$

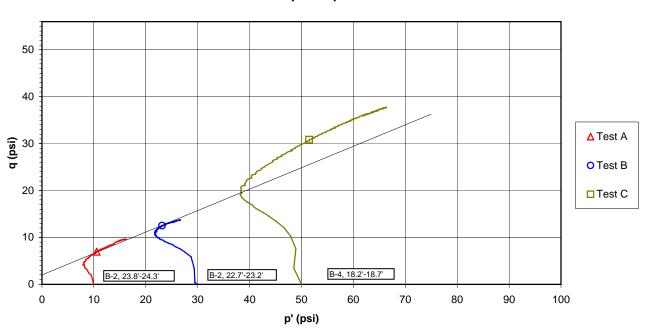
c' = 490 psf

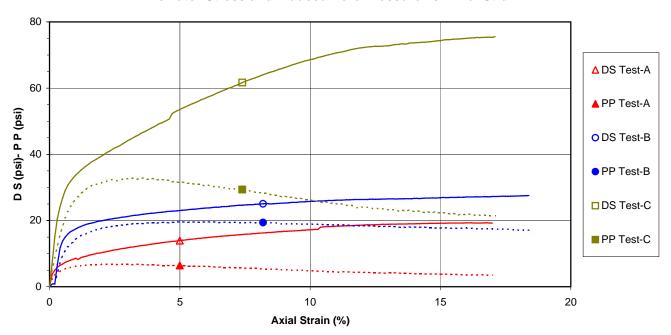
Failure Criterion: Maximum Effective Principal Stress Ratio

p' vs. q Plot

Project Sample ID AEP-Clifty Creek-West Bottom Ash and Fly Ash Ponds subsurface exploration B-2, 23.8'-24.3' & B-2, 22.7'-23.2' & B-4, 18.2'-18.7'

Project No. Test Number


175539022


320 psf

Failure Criterion:

 $\phi' = 27.2 \text{ deg.}$ Maximum Effective Principal Stress Ratio

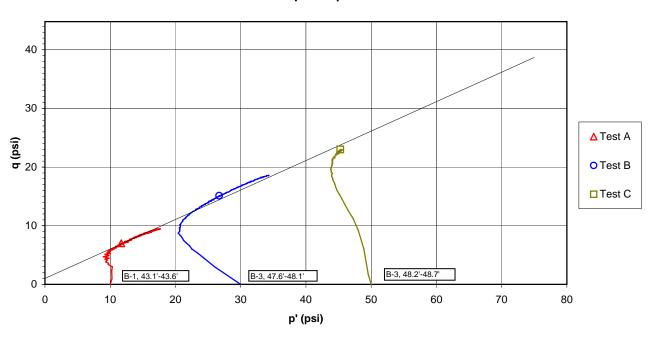
p' vs. q Plot

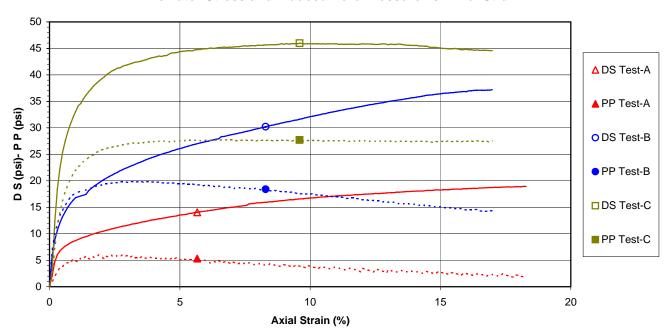
Project Sample ID AEP-Clifty Creek-West Bottom Ash and Fly Ash Ponds subsurface exploration

Project No. 17
Test Number

175539022

B-1, 43.1'-43.6' & B-3, 47.6'-48.1' & B-3, 48.2'-48.7'


 $\phi' = 30.2 \text{ deg.}$


c' = 170 psf

Failure Criterion:

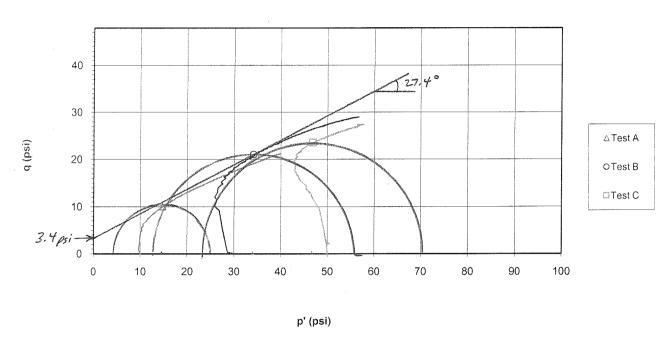
Maximum Effective Principal Stress Ratio

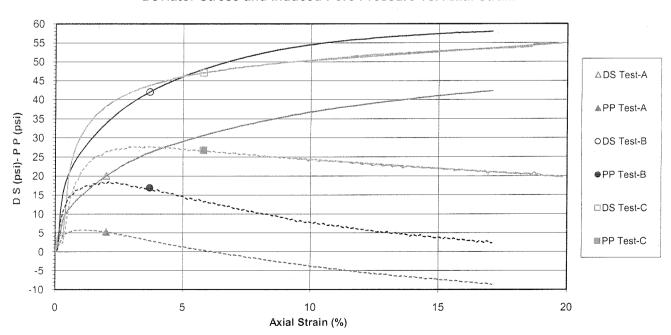
p' vs. q Plot

Project Sample ID AEP-Clifty Creek-West Bottom and Fly Ash Ponds subsurface exploration B-3, 10.7'-11.2' & B-3, 10.1'-10.6' & B-5, 8.1'-8.6'

Project No.

175539022


Test Number 490 psf


Failure Criterion:

 $\phi' = 27.4 \text{ deg.}$

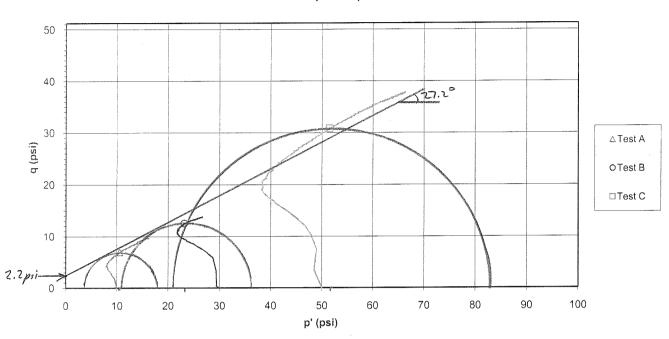
Maximum Effective Principal Stress Ratio

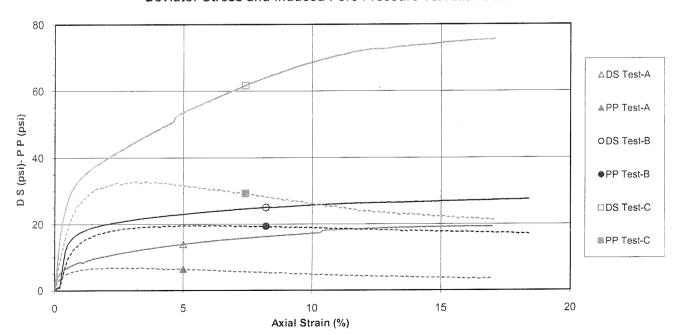
p' vs. q Plot

Project Sample ID AEP-Clifty Creek-West Bottom Ash and Fly Ash Ponds subsurface exploration B-2, 23.8'-24.3' & B-2, 22.7'-23.2' & B-4, 18.2'-18.7'

 $\phi' = 27.2 \text{ deg.}$

Project No. 175539022


Test Number


320 psf

Failure Criterion:

Maximum Effective Principal Stress Ratio

p' vs. q Plot

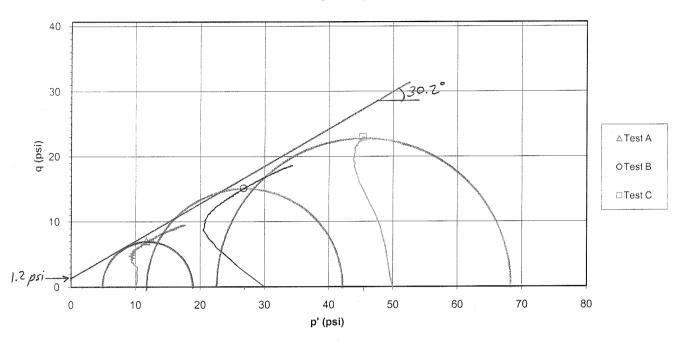
Project Sample ID AEP-Clifty Creek-West Bottom Ash and Fly Ash Ponds subsurface exploration

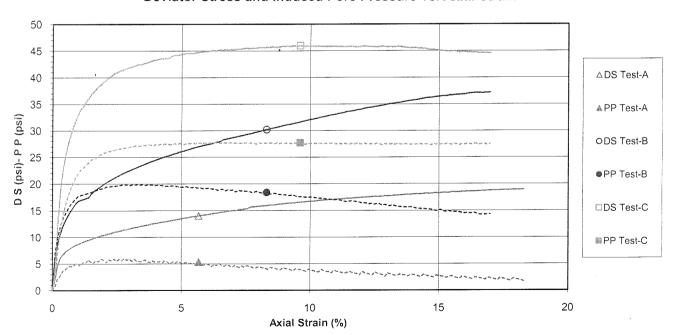
B-1, 43.1'-43.6' & B-3, 47.6'-48.1' & B-3, 48.2'-48.7'

Project No.

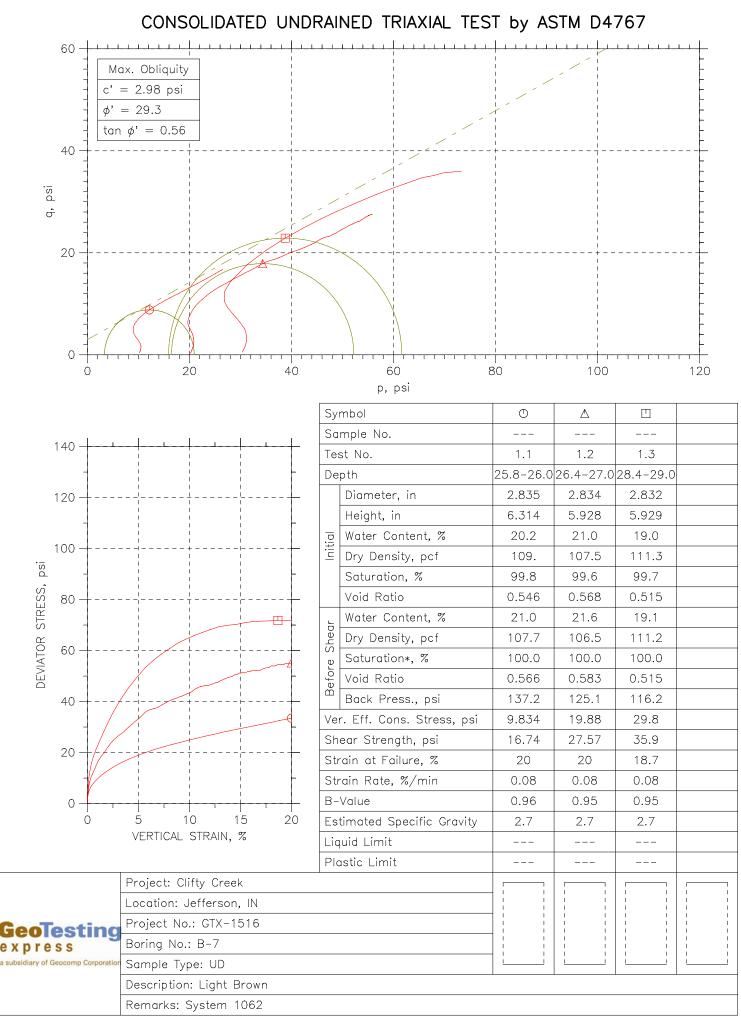
175539022

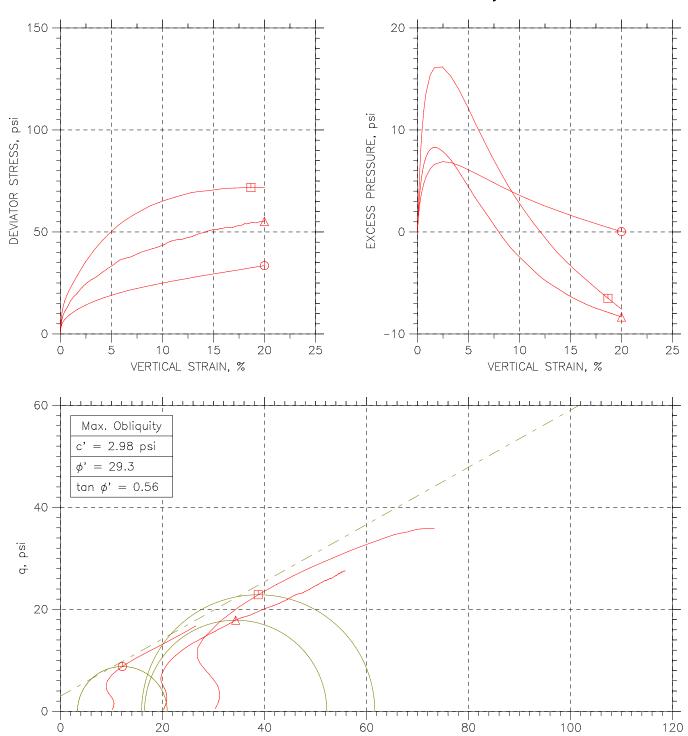
Test Number 3


 $\phi' = 30.2 \text{ deg.}$

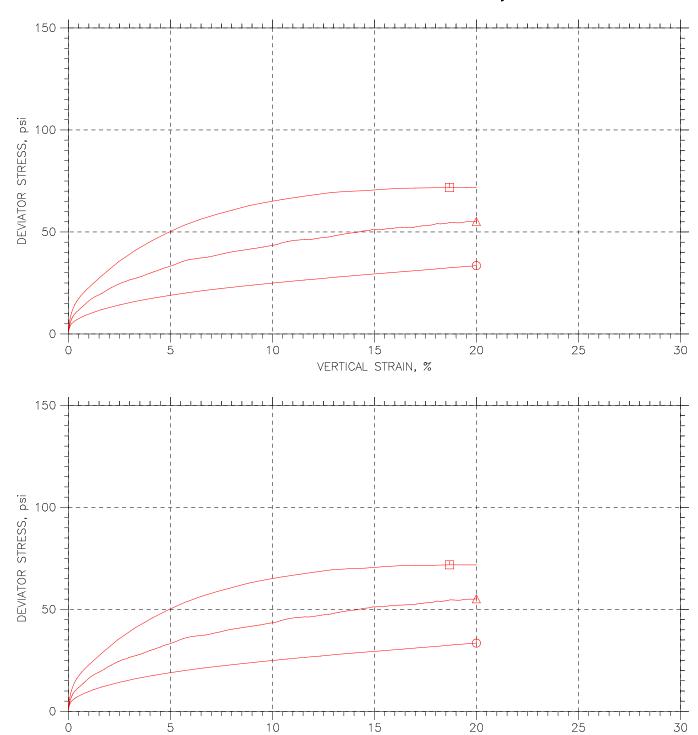

c' = 170 psf

Failure Criterion:


Maximum Effective Principal Stress Ratio


p' vs. q Plot

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф		1.1	25.8-26.0	jm	12/10/09	mm		1516-1.1.dat
Δ		1.2	26.4-27.0	jm	12/10/09	mm		1516-1.2.dat
		1.3	28.4-29.0	jm	12/9/09	mm		1516-1.3.dat

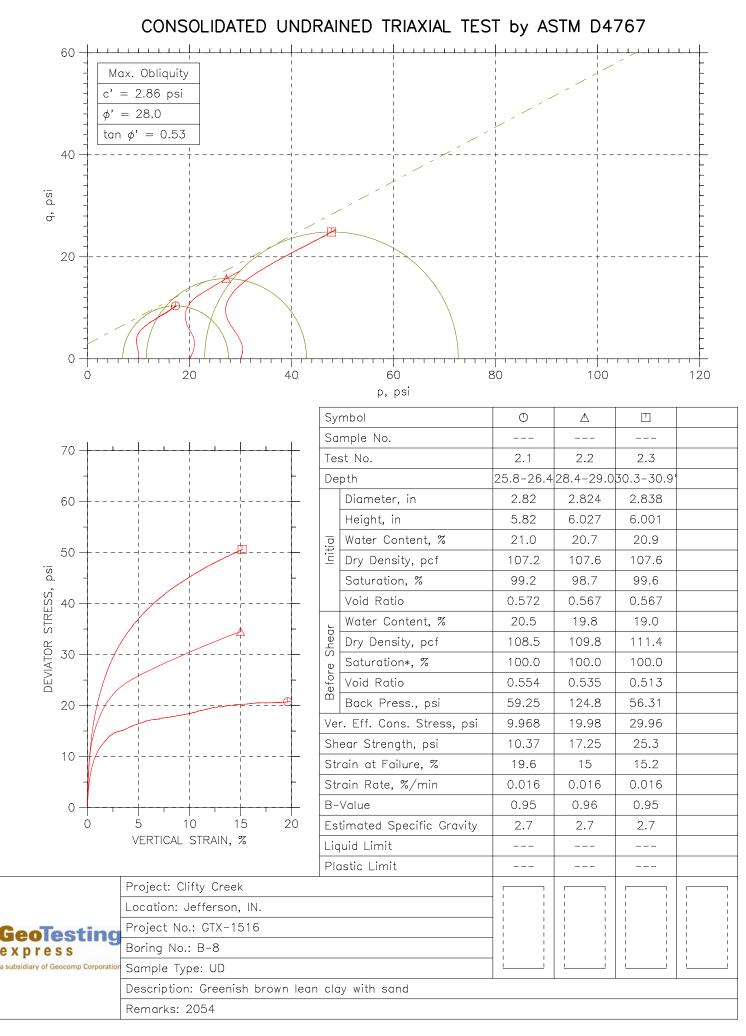

p, psi

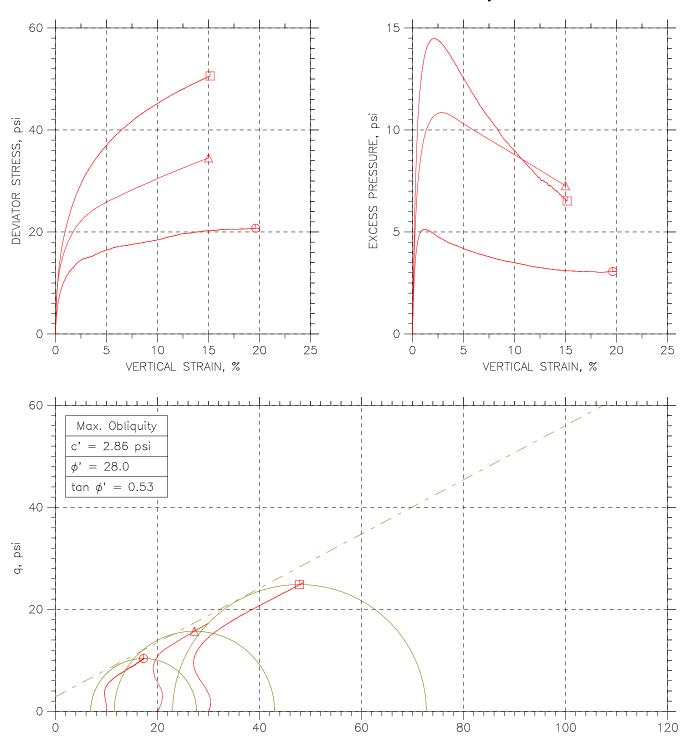
GeoTesting	
express	
a subsidiary of Geocomp Corporation	

Project: Clifty Creek	Location: Jefferson, IN	Project No.: GTX-1516
Boring No.: B-7	Sample Type: UD	

Description: Light Brown

Remarks: System 1062


	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0		1.1	25.8-26.0	jm	12/10/09	mm		1516-1.1.dat
Δ		1.2	26.4-27.0	jm	12/10/09	mm		1516-1.2.dat
		1.3	28.4-29.0	jm	12/9/09	mm		1516-1.3.dat

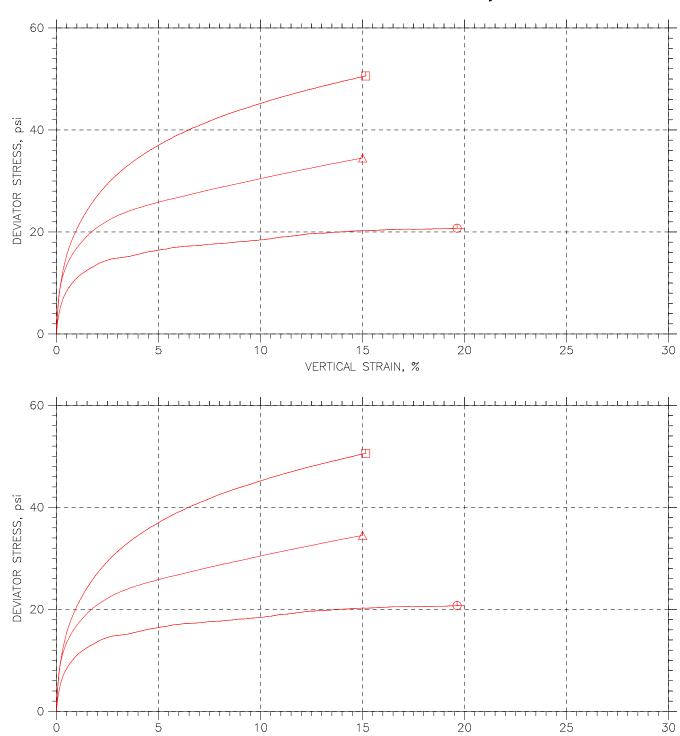

VERTICAL STRAIN, %

GeoTesting	
express	
a subsidiary of Geocomp Corporation	
	Г

	Project: Clifty Creek	Location: Jefferson, IN	Project No.: GTX-1516
	Boring No.: B-7	Sample Type: UD	
n	Description: Light Brown		

Remarks: System 1062

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф		2.1	25.8-26.4	jm	12/11/09	mm		1516-2.1.dat
Δ		2.2	28.4-29.0	jm	12/11/09	mm		1516-2.2A.dat
		2.3	30.3-30.9	jm	12/09/09	mm		1516-2.3.dat


p, psi

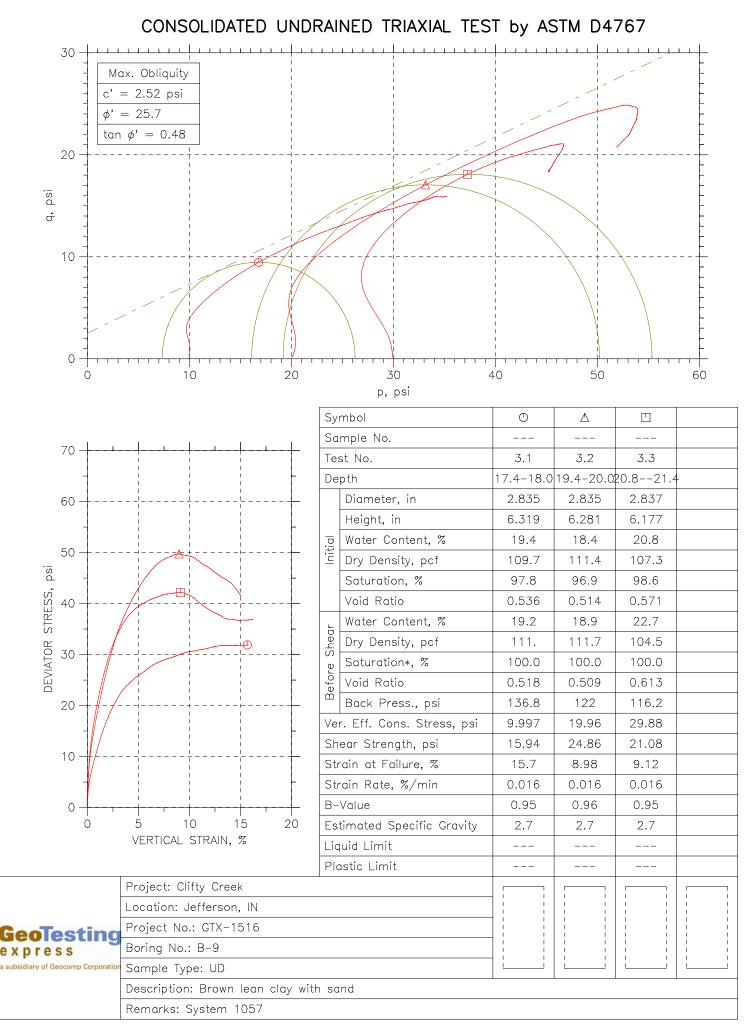
GeoTestino	
express	3
a subsidiary of Geocomp Corporation	on

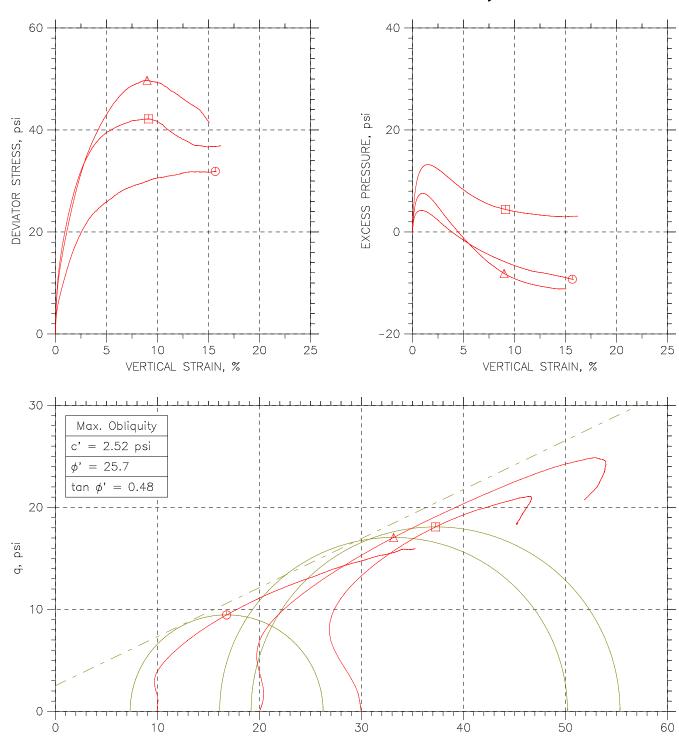
Project: Clifty Creek	Location: Jefferson, IN.	Project No.: GTX-1516
Boring No.: B-8	Sample Type: UD	

Description: Greenish brown lean clay with sand

Remarks: 2054

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф		2.1	25.8-26.4	jm	12/11/09	mm		1516-2.1.dat
Δ		2.2	28.4-29.0	jm	12/11/09	mm		1516-2.2A.dat
		2.3	30.3-30.9	jm	12/09/09	mm		1516-2.3.dat


VERTICAL STRAIN, %


GeoTesting	F
express	E
a subsidiary of Geocomp Corporation	[

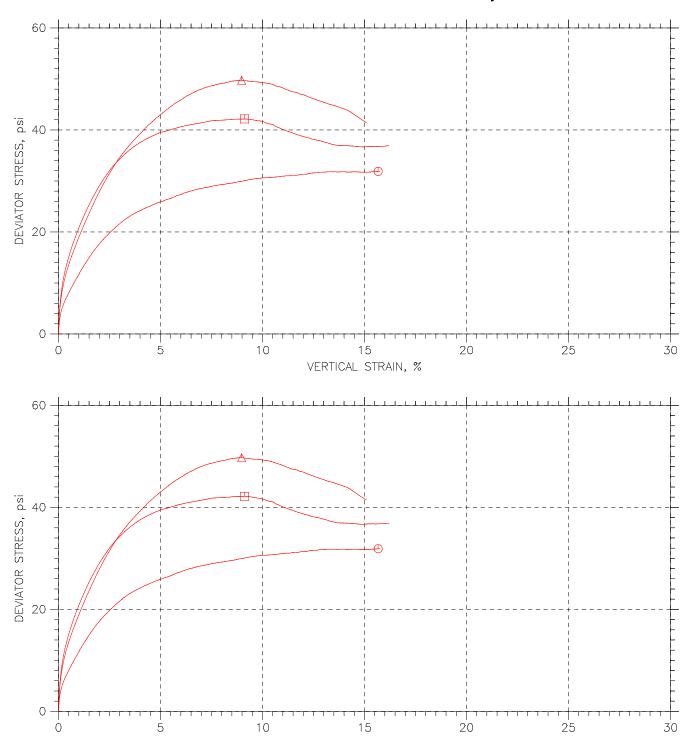
Project: Clifty Creek	Location: Jefferson, IN.	Project No.: GTX-1516
Boring No.: B-8	Sample Type: UD	

Description: Greenish brown lean clay with sand

Remarks: 2054

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф		3.1	17.4-18.0	jm	12/15/09	mm		1516-3.1.dat
Δ		3.2	19.4-20.0	jm	12/16/09	mm		1516-3.2Adat.dat
		3.3	20.821.4	jm	12/10/09	mm		1516-3.3.dat

p, psi


GeoTesting	
express	-
a subsidiary of Geocomp Corporation	

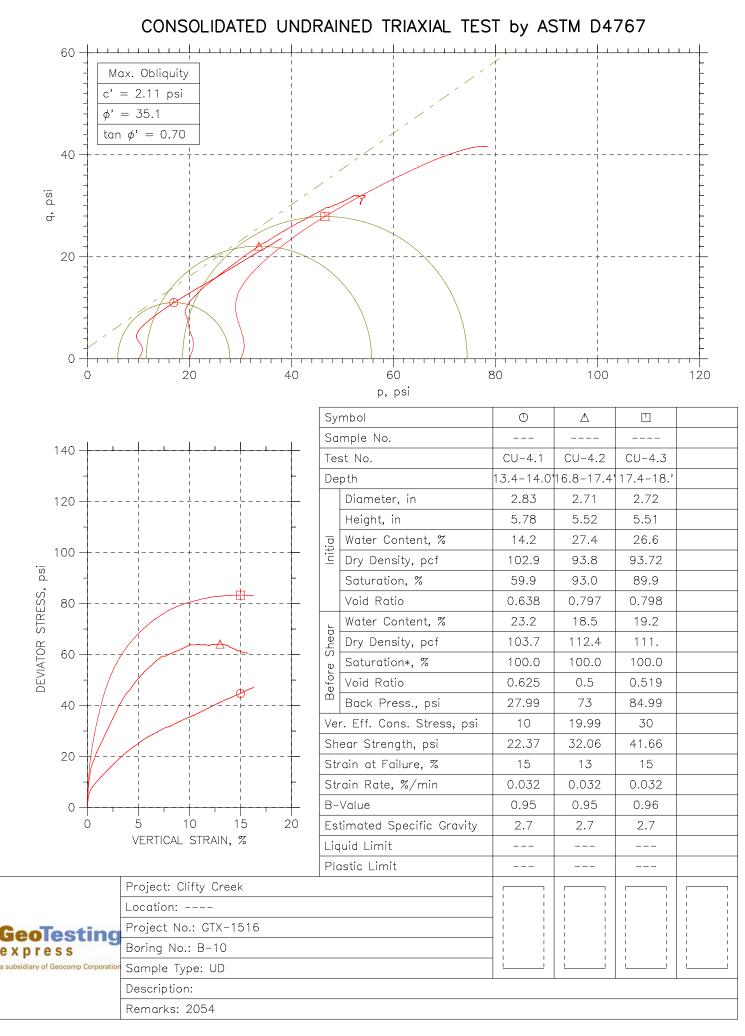
Project: Clifty Creek	Location: Jefferson, IN	Project No.: GTX-1516
Boring No.: B-9	Sample Type: UD	

Description: Brown lean clay with sand

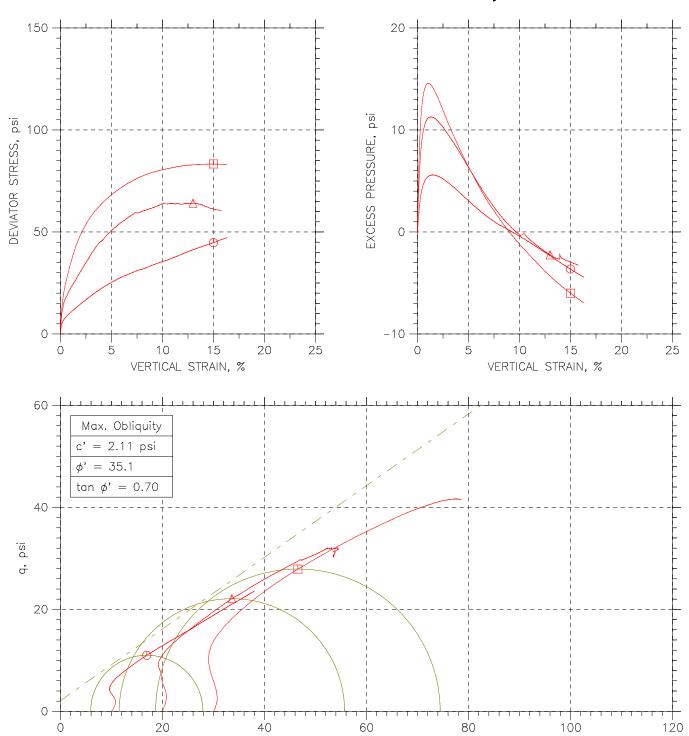
Remarks: System 1057

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф		3.1	17.4-18.0	jm	12/15/09	mm		1516-3.1.dat
Δ		3.2	19.4-20.0	jm	12/16/09	mm		1516-3.2Adat.dat
		3.3 20.821.4 jm		jm	12/10/09 mm			1516-3.3.dat


VERTICAL STRAIN, %

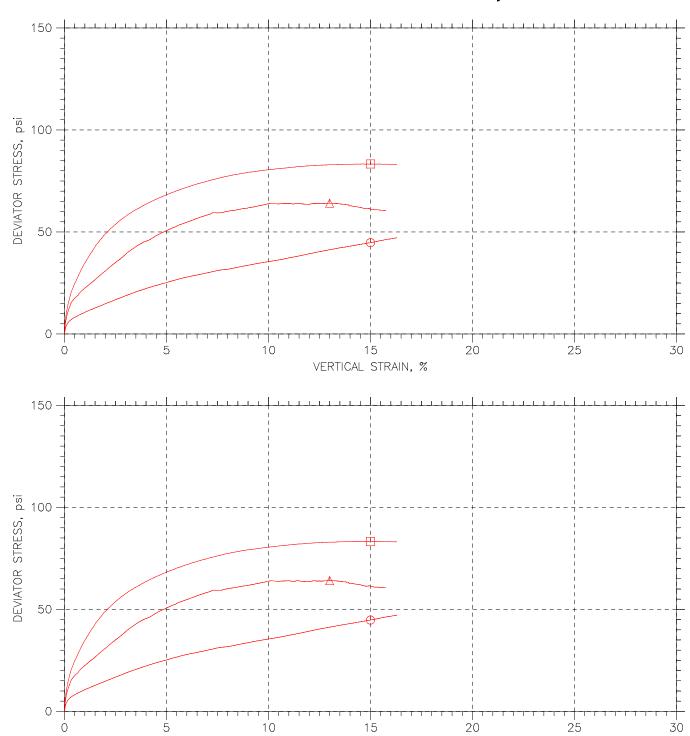
GeoTesting	
express	
a subsidiary of Geocomp Corporation	


Project: Clifty Creek	Location: Jefferson, IN	Project No.: GTX-1516
Boring No.: B-9	Sample Type: UD	

Description: Brown lean clay with sand

Remarks: System 1057

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767


	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф		CU-4.1	13.4-14.0'	JM	12/12/09	MM		1516-4.1.dat
Δ		CU-4.2	16.8-17.4	JM	12/13/09	ММ		1516-4.2.dat
		CU-4.3	17.4-18.	JM	12/12/09	ММ		1516-4.3.dat

p, psi

GeoTesting	F
express	-
a subsidiary of Geocomp Corporation	[
	٦,

	Project: Clifty Creek	Location:	Project No.: GTX-1516
	Boring No.: B-10	Sample Type: UD	
or	Description:		
	Remarks: 2054		

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф		CU-4.1	13.4-14.0'	JM	12/12/09	ММ		1516-4.1.dat
Δ		CU-4.2	16.8-17.4	JM	12/13/09	ММ		1516-4.2.dat
		CU-4.3	17.4-18.'	JM	12/12/09	ММ		1516-4.3.dat

VERTICAL STRAIN, %

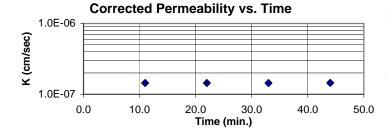

GeoTesting	ı
express	ı
a subsidiary of Geocomp Corporation	1
	Γ.

Project: Clifty Creek	Location:	Project No.: GTX-1516
Boring No.: B-10	Sample Type: UD	
Description:		

Remarks: 2054

APPENDIX F

PERMEABILITY TESTS



Project Name	AEP-Clifty C	reek-West Bott	tom Ash and Fly Ash Ponds	subsurfac	e exploration	Project No.	175539022
Source	B-1, 15.0'-17	7.0', TI 16.1'-16	Test ID	7A			
Visual Classifi	cation	Lean Clay (CL), brown, moist, firm			Prepared By	CSM
Undisturbed	XX		Specific Gravity	2.72	ASTM D854-A	Date	12-9-09
			Maximum Dry De	ensity (pc	<u>f)</u>	Percent of Maximum	
Permeant:	De-aired tap	water				•	
Selection and	Preparation (Comments:					

Specimens (if compacted) were compacted in a Proctor Mold as follows: The Maximum Dry Density was converted to Wet Density, this mass was divided by 4 (layers) and 3 of the 4 layers were compacted into the mold using a Proctor Hammer using 19 blows per layer. The density was varied by reducing the height of the drop by the amount listed beside "Compacted". The specimen was trimmed from the bottom two layers.

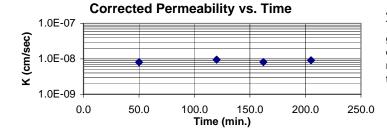
	Initial Specimen Data	After Consolidation Data	After Test Data	Final Pressures (ps	si)	
Height (in.)	1.4783	1.4675	1.4676	Chamber	75	
Diameter (in.)	2.8043		2.8179	Influent	70	
Moisture Content (%)	19.7		20.8	Effluent	65 Applied Head Difference (psi)	5
Dry Unit Weight (pcf)	109.5		109.2		Back Pressure Saturated to (psi)	65
Void Ratio	0.551		0.555	Maximum Effective Consolidation Stress (psi)		10
Degree of Saturation (%)	97.3		101.9	Minimum Ef	fective Consolidation Stress (psi)	5
Trimmings MC (%)	19.6					

						Hydraulic Conductivity			
	Clock			Тор	Test Time	k	k	k @ 20° C	k @ 20° C
Date	(24H:M)	Temp. °F	Bottom Head	Head	(sec)	(m/s)	(cm/s)	(m/s)	(cm/s)
12-21-09	10:24	73.0	15.02	8.57	0				
12-21-09	10:35	73.0	14.90	8.69	6.60E+02	1.5E-09	1.5E-07	1.4E-09	1.4E-07
12-21-09	10:46	73.0	14.78	8.81	6.60E+02	1.5E-09	1.5E-07	1.4E-09	1.4E-07
12-21-09	10:57	73.0	14.66	8.93	6.60E+02	1.5E-09	1.5E-07	1.4E-09	1.4E-07
12-21-09	11:08	73.0	14.54	9.05	6.60E+02	1.5E-09	1.5E-07	1.4E-09	1.4E-07

A gradient of approximately 93.4 was used for this test. This gradient exceeds ASTM guidelines for maximum gradient, but was used to achieve the requestors desired test duration. Examination of the sample shows no signs of material loss or clogging that may affect test results.

Average Hydraulic Conductivity @ 20° C (last 4 determinations)	m/s	1.44E-09	cm/s	1.44E-07
Average Hydraulic Conductivity @ 20° C (last run)	m/s	1.44E-09	cm/s	1.44E-07

Reviewed by:



Project Name	AEP-Clifty C	reek-West Bot	Project No.	175539022			
Source	B-2, 42.5'-44	4.5', TI 42.6'-43	3.1'			Test ID	48A
Visual Classific	cation	Lean Clay (CL	.), gray, wet, soft	Prepared By	CSM		
Undisturbed	XX		Specific Gravity	2.69	ASTM D854-A	Date	11-30-09
		-	Maximum Dry Do	Percent of Maximum			
Permeant:	De-aired tap	water				•	
Selection and	Preparation (Comments:					

Specimens (if compacted) were compacted in a Proctor Mold as follows: The Maximum Dry Density was converted to Wet Density, this mass was divided by 4 (layers) and 3 of the 4 layers were compacted into the mold using a Proctor Hammer using 19 blows per layer. The density was varied by reducing the height of the drop by the amount listed beside "Compacted". The specimen was trimmed from the bottom two layers.

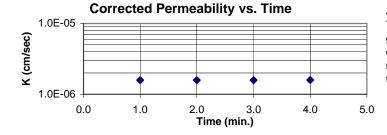
	Initial Specimen Data	After Consolidation Data	After Test Data	Final Pressures (psi)
Height (in.)	1.4906	1.3473	1.3472	Chamber 75
Diameter (in.)	2.8023		2.8480	Influent 70
Moisture Content (%)	31.6		26.0	Effluent 65 Applied Head Difference (psi) 5
Dry Unit Weight (pcf)	91.6		98.1	Back Pressure Saturated to (psi) 65
Void Ratio	0.834		0.712	Maximum Effective Consolidation Stress (psi) 10
Degree of Saturation (%)	101.8		98.1	Minimum Effective Consolidation Stress (psi) 5
Trimmings MC (%)	30.9		•	

						Hydraulic Conductivity			
	Clock			Тор	Test Time	k	k	k @ 20° C	k @ 20° C
Date	(24H:M)	Temp. °F	Bottom Head	Head	(sec)	(m/s)	(cm/s)	(m/s)	(cm/s)
12-22-09	8:20	70.0	22.26	3.46	0				
12-22-09	9:10	70.0	22.13	3.59	3.00E+03	8.3E-11	8.3E-09	8.1E-11	8.1E-09
12-22-09	10:20	70.0	21.92	3.81	4.20E+03	9.8E-11	9.8E-09	9.5E-11	9.5E-09
12-22-09	11:02	70.0	21.81	3.92	2.52E+03	8.4E-11	8.4E-09	8.1E-11	8.1E-09
12-22-09	11:45	70.0	21.68	4.04	2.58E+03	9.3E-11	9.3E-09	9.1E-11	9.1E-09
	_			_					

A gradient of approximately 92.6 was used for this test. This gradient exceeds ASTM guidelines for maximum gradient, but was used to achieve the requestors desired test duration. Examination of the sample shows no signs of material loss or clogging that may affect test results.

Average	Hydraulic Conductivity @	20° C (last 4 determinations)
Average	Hydraulic Conductivity @	20° C (last run)

cm/s	8.70E-09
cm/s	8.70E-09



Project Name	AEP-Clifty C	Creek- West Botte	Project No.	175539022			
Source	B-4, 7.5'-9.5	5', TI 7.6'-8.1'				Test ID	32A
Visual Classification		Lean Clay (CL)	Prepared By	CSM			
Undisturbed	XX		Specific Gravity	2.7	ASTM D854-A	Date	12-9-09
		_	Maximum Dry De	ensity (po	rf)	Percent of Maximum	
Permeant:	De-aired tap	water				-	
Selection and	Preparation (Comments:					

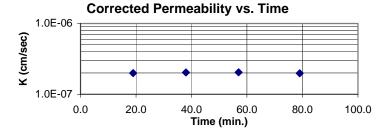
Specimens (if compacted) were compacted in a Proctor Mold as follows: The Maximum Dry Density was converted to Wet Density, this mass was divided by 4 (layers) and 3 of the 4 layers were compacted into the mold using a Proctor Hammer using 19 blows per layer. The density was varied by reducing the height of the drop by the amount listed beside "Compacted". The specimen was trimmed from the bottom two layers.

	Initial Specimen Data	After Consolidation Data	After Test Data	Final Pressures (psi)
Height (in.)	1.4754	1.4631	1.4654	Chamber 75
Diameter (in.)	2.8057		2.8200	Influent 70
Moisture Content (%)	18.8		20.1	Effluent 65 Applied Head Difference (psi) 5
Dry Unit Weight (pcf)	110.0		109.6	Back Pressure Saturated to (psi) 65
Void Ratio	0.532		0.537	Maximum Effective Consolidation Stress (psi) 10
Degree of Saturation (%)	95.6		100.8	Minimum Effective Consolidation Stress (psi)5
Trimmings MC (%)	19.1		•	

			•			Hydraulic Conductivity			
	Clock			Тор	Test Time	k	k	k @ 20° C	k @ 20° C
Date	(24H:M)	Temp. °F	Bottom Head	Head	(sec)	(m/s)	(cm/s)	(m/s)	(cm/s)
12-21-09	11:25	73.0	15.06	10.34	0				
12-21-09	11:26	73.0	14.94	10.46	6.00E+01	1.7E-08	1.7E-06	1.6E-08	1.6E-06
12-21-09	11:27	73.0	14.82	10.58	6.00E+01	1.7E-08	1.7E-06	1.6E-08	1.6E-06
12-21-09	11:28	73.0	14.70	10.70	6.00E+01	1.7E-08	1.7E-06	1.6E-08	1.6E-06
12-21-09	11:29	73.0	14.58	10.82	6.00E+01	1.7E-08	1.7E-06	1.6E-08	1.6E-06
	·								

A gradient of approximately 93.5 was used for this test. This gradient exceeds ASTM guidelines for maximum gradient, but was used to achieve the requestors desired test duration. Examination of the sample shows no signs of material loss or clogging that may affect test results.

Average Hydraulic Cor	ductivity @ 20° C (last 4 determinations)	m/s	1.58E-08	cm/s	1.58E-06
Average Hydraulic Cor	ductivity @ 20° C (last run)	m/s	1.58E-08	cm/s	1.58E-06



Project Name	oject Name AEP-Clifty Creek-West Bottom Ash and Fly Ash Ponds subsurface exploration							
Source	B-6, 17.5'-	19.0', TI 17.6'-18.1'				Test ID		291
Visual Classifi	cation	Lean Clay (CL), bro	wn, moist, firm			Prepared By	CSM	
Undisturbed	XX		Specific Gravity	2.68	ASTM D854-A	Date		12-9-09
		<u> </u>	Maximum Dry De	ensity (pcf	<u>f)</u>	Percent of Maximum		
Permeant:	De-aired ta	ap water						
Selection and	Preparation	n Comments:						

Specimens (if compacted) were compacted in a Proctor Mold as follows: The Maximum Dry Density was converted to Wet Density, this mass was divided by 4 (layers) and 3 of the 4 layers were compacted into the mold using a Proctor Hammer using 19 blows per layer. The density was varied by reducing the height of the drop by the amount listed beside "Compacted". The specimen was trimmed from the bottom two layers.

	Initial Specimen Data	After Consolidation Data	After Test Data	Final Pressures (psi)
Height (in.)	1.4778	1.4443	1.4478	Chamber 75
Diameter (in.)	2.8030		2.7955	Influent 70
Moisture Content (%)	32.0		33.2	Effluent 65 Applied Head Difference (psi) 5
Dry Unit Weight (pcf)	87.1		89.4	Back Pressure Saturated to (psi) 65
Void Ratio	0.921		0.872	Maximum Effective Consolidation Stress (psi) 10
Degree of Saturation (%)	93.1		102.1	Minimum Effective Consolidation Stress (psi) 5
Trimmings MC (%)	33.1			

							Hydraulic (Conductivity	
	Clock			Тор	Test Time	k	k	k @ 20° C	k @ 20° C
Date	(24H:M)	Temp. °F	Bottom Head	Head	(sec)	(m/s)	(cm/s)	(m/s)	(cm/s)
12-21-09	13:10	73.0	19.94	4.28	0				
12-21-09	13:29	73.0	19.65	4.56	1.14E+03	2.1E-09	2.1E-07	2.0E-09	2.0E-07
12-21-09	13:48	73.0	19.36	4.85	1.14E+03	2.2E-09	2.2E-07	2.0E-09	2.0E-07
12-21-09	14:07	73.0	19.07	5.14	1.14E+03	2.2E-09	2.2E-07	2.0E-09	2.0E-07
12-21-09	14:29	73.0	18.71	5.43	1.32E+03	2.1E-09	2.1E-07	2.0E-09	2.0E-07

A gradient of approximately 93.4 was used for this test. This gradient exceeds ASTM guidelines for maximum gradient, but was used to achieve the requestors desired test duration. Examination of the sample shows no signs of material loss or clogging that may affect test results.

Average Hydraulic Conductivity @ 20° C (last 4 determinations)	m/s	2.01E-09	cm
Average Hydraulic Conductivity @ 20° C (last run)	m/s	2.01E-09	cm

Reviewed by:

2.01E-07 2.01E-07

PERMEABILITY TEST

(ASTM D5084 - 90) (Method C, Increasing Tailwater Level)

Project Number GTX-1516	Tested By JM
Project Name Clifty Creek	Test Date 12/12/10
Boring No. B-7	Reviewed By MM
Sample No	Review Date 12/15/10
Sample Depth 27.4-27.7 ft	Lab No. 5
Sample Description Lean clay	

Sample Data

Length,	in	Diameter, in		Pan No.	CS-1
Location 1	2.831	Location 1	2.825	Dry Soil+Pan, grams	484.22
Location 2	2.830	Location 2	2.825	Pan Weight, grams	8.17
Location3	2.829	Location 3	2.825		
Average	2.830	Average	2.825	Moisture Content, %	24.6
		Wet Soil + Tare, grams	593.33	Wet Unit Weight, pcf	127.4
		Tare Weight, grams	0.00	Dry Unit Weight, pcf	102.2

Chamber Pressure, psi	65
Back Pressure, psi	60
Confining Pressure, psi	5

Remarks:

Date	Date	Time	Time	Time	H _a	H_1	H_b	H_2	k	Temp	k
Start	Finish	Start	Finish	(sec)	(cm)	(cm)	(cm)	(cm)	cm/sec	(°C)	cm/sec
											at 20 °C
				2820	9.9	100.3	10.60	99.5	8.4E-08	22	8.1E-08
				6300	9.9	100.3	11.80	98.4	9.7E-08	24	8.8E-08
				9000	9.9	100.3	12.50	97.7	9.4E-08	24	8.5E-08
				14400	9.9	100.3	14.00	96.1	9.5E-08	24	8.6E-08
				27000	9.9	100.3	17.00	93	9.1E-08	24	8.3E-08
					·						

No. of Trials	Sample	Max. Density	Compaction	Sample
	Type	(pcf)	%	Orientation
5	UD	102.2	N/A	Vertical

Avg. k at 20 °C 8.4E-08 cm/sec

HYDRAULIC CONDUCTIVITY

Project No. GTX-1516 Tested By JMProject Name $Clifty \ Creek$ Test Date 12/12/2010Region No. R-7

Boring No. B-7 Reviewed By MM

Sample No. --- Review Date 12/15/2010

Sample Depth 27.4-27.7 ft Lab No. 5
Sample Description Lean clay

ASTM D5084 - Falling Head (Method C RisingTail)

8 (0 /
Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	24.6
Wet Unit Weight, pcf:	127.4
Dry Unit Weight, pcf:	102.2
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	8.4E-08

Remarks:			

PERMEABILITY TEST

(ASTM D5084 - 90) (Method C, Increasing Tailwater Level)

Project Number	GTX-1516	Tested By	JM
Project Name	Clifty Creek	Test Date	12/12/10
Boring No.	B-8	Reviewed By	MM
Sample No.		Review Date	12/15/10
Sample Depth	29.7-30.3 ft	Lab No.	7
Sample Descrip	tion Lean clay	with sand	

Sample Data

Length,	in	Diameter, in Pan No.		A44	
Location 1	2.841	Location 1	2.775	Dry Soil+Pan, grams	487.70
Location 2	2.843	Location 2	2.784	Pan Weight, grams	8.99
Location3	2.844	Location 3	2.788		
Average	2.843	Average	2.782	Moisture Content, %	23.5
		Wet Soil + Tare, grams	591.11	Wet Unit Weight, pcf	130.3
	Tare Weight, grams		0.00	Dry Unit Weight, pcf	105.5

Chamber Pressure, psi	65
Back Pressure, psi	60
Confining Pressure, psi	5

Remarks:

Date	Date	Time	Time	Time	H_a	H_1	H_b	H_2	k	Temp	k
Start	Finish	Start	Finish	(sec)	(cm)	(cm)	(cm)	(cm)	cm/sec	(°C)	cm/sec
											at 20 °C
				3200	6.5	107.2	6.90	106.9	3.2E-08	22	3.1E-08
				6600	6.5	107.2	7.40	106.4	3.8E-08	24	3.4E-08
				11400	6.5	107.2	8.10	105.7	4.0E-08	24	3.7E-08
				18000	6.5	107.2	9.00	104.8	4.1E-08	24	3.7E-08
				30000	6.5	107.2	10.20	103.6	3.7E-08	24	3.3E-08

No. of Trials	Sample	Max. Density	Compaction	Sample
	Type	(pcf)	%	Orientation
5	UD	105.5	N/A	Vertical

Avg. k at 20 °C 3.4E-08 cm/sec

 $a = area ext{ of burette in cm}^2$ Ha = initial inlet head in cm $H_b = final inlet head in cm$ $a = 0.16 ext{ cm}^2$ $L = length ext{ of sample in cm}$ $H_1 = initial ext{ outlet head in cm}$ $H_2 = final ext{ outlet head in cm}$ $A = 39.23 ext{ cm}^2$ Cm^2 $Cm^$

HYDRAULIC CONDUCTIVITY

Project No. GTX-1516 Tested By JM

Project Name Clifty Creek Test Date 12/12/2010

Boring No. B-8 Reviewed By MM

Sample No. --- Review Date 12/15/2010

Sample Depth 29.7-30.3 ft Lab No. 7

Sample Description Lean clay with sand

ASTM D5084 - Falling Head (Method C RisingTail)

	1
Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	23.5
Wet Unit Weight, pcf:	130.3
Dry Unit Weight, pcf:	105.5
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	3.4E-08

Remarks:			
			_

PERMEABILITY TEST

(ASTM D5084 - 90) (Method C, Increasing Tailwater Level)

Project Number GTX-1516			Tested By	JM
Project Name	Clifty Cre	ek	Test Date	12/12/10
Boring No.	B-9		Reviewed By	MM
Sample No.			Review Date	12/15/10
Sample Depth	18.3-18.6		Lab No.	8
Sample Descrip	otion	Lean clay		

Sample Data

Length,	in	Diameter, in		Pan No.	a-18
Location 1	2.899	Location 1	2.872	Dry Soil+Pan, grams	541.33
Location 2	2.901	Location 2	2.877	Pan Weight, grams	9.11
Location3	2.905	Location 3	2.877		
Average	2.902	Average	2.875	Moisture Content, %	21.0
		Wet Soil + Tare, grams	644.22	Wet Unit Weight, pcf	130.3
		Tare Weight, grams	0.00	Dry Unit Weight, pcf	107.6

Chamber Pressure, psi	65
Back Pressure, psi	60
Confining Pressure, psi	5

Remarks:

Date	Date	Time	Time	Time	H_a	H_1	H_b	H_2	k	Temp	k
Start	Finish	Start	Finish	(sec)	(cm)	(cm)	(cm)	(cm)	cm/sec	(°C)	cm/sec
											at 20 °C
				1800	5.3	100.4	5.70	100	6.6E-08	22	6.3E-08
				4800	5.3	100.4	6.40	99.3	6.9E-08	24	6.2E-08
				8400	5.3	100.4	7.20	98.5	6.8E-08	24	6.2E-08
				16200	5.3	100.4	8.80	96.9	6.6E-08	24	6.0E-08
				27000	5.3	100.4	11.00	94.7	6.7E-08	24	6.0E-08

No. of Trials	Sample	Max. Density	Compaction	Sample
	Type	(pcf)	%	Orientation
5	UD	107.6	N/A	Vertical

Avg. k at 20 °C 6.2E-08 cm/sec

HYDRAULIC CONDUCTIVITY

Project No. Tested By GTX-1516 JMProject Name Test Date Clifty Creek 12/12/2010 **B-9**

Review Date 12/15/2010

Boring No. Reviewed By MM Sample No.

8 Sample Depth 18.3-18.6 Lab No.

Sample Description *Lean clay*

ASTM D5084 - Falling Head (Method C RisingTail)

Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	21.0
Wet Unit Weight, pcf:	130.3
Dry Unit Weight, pcf:	107.6
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	6.2E-08

Remarks:			

PERMEABILITY TEST

(ASTM D5084 - 90) (Method C, Increasing Tailwater Level)

Project Number	GTX-1516	Tested By	JM
Project Name	Clifty Creek	Test Date	12/12/10
Boring No.	B-10	Reviewed By	MM
Sample No.		Review Date	12/15/10
Sample Depth	16.4-16.7 ft	Lab No.	11
Sample Descrip	tion Lean clay		

Sample Data

Length, in		Diameter, in		Pan No.	a-22
Location 1	3.121	Location 1	2.876	Dry Soil+Pan, grams	539.99
Location 2	3.203	Location 2	2.877	Pan Weight, grams	9.13
Location3	3.126	Location 3	2.877		
Average	3.150	Average	2.877	Moisture Content, %	21.1
		Wet Soil + Tare, grams	642.99	Wet Unit Weight, pcf	119.6
		Tare Weight, grams	0.00	Dry Unit Weight, pcf	98.8

Chamber Pressure, psi	65
Back Pressure, psi	60
Confining Pressure, psi	5

Remarks:

Date	Date	Time	Time	Time	H_a	H_1	H_b	H_2	k	Temp	k
Start	Finish	Start	Finish	(sec)	(cm)	(cm)	(cm)	(cm)	cm/sec	(°C)	cm/sec
											at 20 °C
				1800	7.7	99.3	8.50	98.5	1.5E-07	22	1.4E-07
				4800	7.7	99.3	9.90	97.1	1.6E-07	22	1.5E-07
				8400	7.7	99.3	11.20	94.7	1.7E-07	22	1.6E-07
				16200	7.7	99.3	13.00	92.9	1.3E-07	22	1.2E-07
				24000	7.7	99.3	15.00	90.9	1.2E-07	22	1.1E-07

No. of Trials	Sample	Max. Density	Compaction	Sample
	Type	(pcf)	%	Orientation
5	UD	107.6	N/A	Vertical

Avg. k at 20 °C 1.4E-07 cm/sec

HYDRAULIC CONDUCTIVITY

Project No. GTX-1516 Tested By JMProject Name $Clifty \ Creek$ Test Date 12/12/2010

Boring No. $extit{B-10}$ Reviewed By $extit{MM}$

Sample No. --- Review Date 12/15/2010 Sample Depth $16.4-16.7\,ft$ Lab No. 11

Sample Description Lean clay

ASTM D5084 - Falling Head (Method C RisingTail)

Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	21.1
Wet Unit Weight, pcf:	119.6
Dry Unit Weight, pcf:	98.8
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	1.4E-07

Remarks:			

APPENDIX G

STANDARD PROCTOR MOISTURE-DENSITY TESTS

Moisture-Density Data Sheet

Project: <u>AEP - Clifty Creek - West Bottom Ash Pond</u>

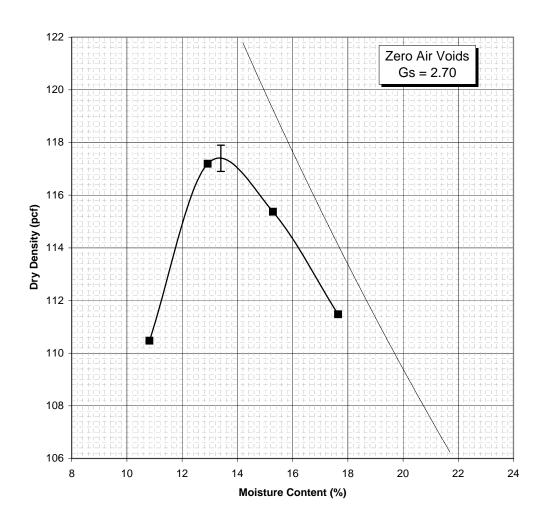
Source: B-1, 5.0'

Sample No.: 319

Project No.: <u>175539022</u>

Sample Description: Brown lean clay with gravel, moist

Nmc: <u>15.6 %</u>


Visual Notes: N/A

Test Method: ASTM D 698 - Method A

Prepared: <u>Dry</u> Oversized Fraction: <u>< 5 %</u> Rammer: <u>Mechanical</u>

Gs - Fines: Assumed

Mold Weight	2041 grams		Moisture Determination				
		Wet Soil					
Wet Weight	Wet Weight	and Can	Dry Soil and		Water	Dry	
plus Mold	minus Mold	Weight	Can Weight	Can Weight	Content	Density	
(grams)	(grams)	(grams)	(grams)	(grams)	(%)	(pcf)	
3879	1838	432.75	397.39	70.52	10.8	110.5	
4028	1987	462.87	418.39	74.30	12.9	117.2	
4038	1997	405.73	362.08	76.62	15.3	115.4	
4010	1969	368.39	324.37	74.94	17.6	111.5	

Maximum Dry Density 117.4 PCF Optimum Moisture Content 13.4 %

Moisture-Density Data Sheet

Project: AEP - Clifty Creek - West Bottom Ash Pond

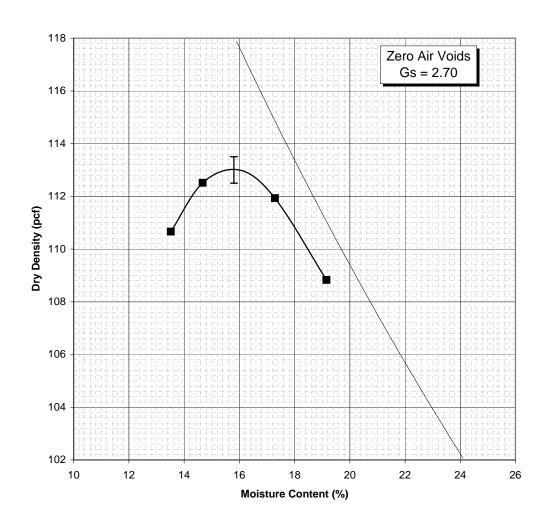
Source: B-5, 7.5'

Sample No.: <u>320</u> Nmc: 18.2 %

Project No.: <u>175539022</u>

Sample Description: brown lean clay, moist

Test Method: ASTM D 698 - Method A


Visual Notes: N/A

Co Finance Assumed

Prepared: <u>Dry</u> Oversized Fraction: <u>< 5 %</u> Rammer: <u>Mechanical</u>

Gs - Fines: Assumed

Mold Weight	2041 grams		Moisture Determination				
		Wet Soil					
Wet Weight	Wet Weight	and Can	Dry Soil and		Water	Dry	
plus Mold	minus Mold	Weight	Can Weight	Can Weight	Content	Density	
(grams)	(grams)	(grams)	(grams)	(grams)	(%)	(pcf)	
3927	1886	422.84	381.18	72.94	13.5	110.7	
3978	1937	388.97	348.78	74.79	14.7	112.5	
4012	1971	392.34	345.43	74.11	17.3	111.9	
3988	1947	409.73	355.79	74.24	19.2	108.8	

Maximum Dry Density 113.0 PCF Optimum Moisture Content 15.8 %

Moisture-Density Data Sheet

Project: <u>AEP - Clifty Creek - South Fly Ash Pond</u>

Source: B-7, 7.0'

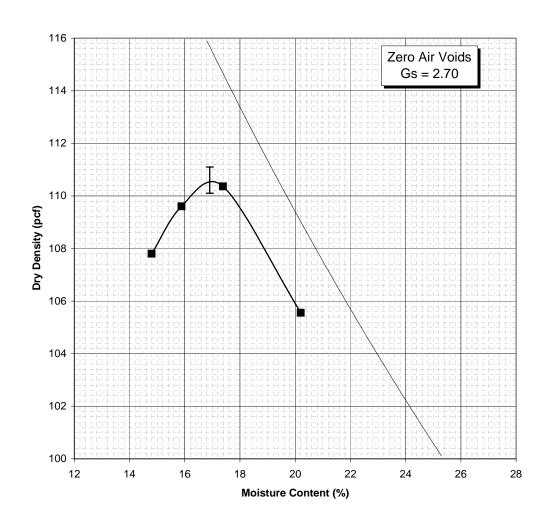
Sample No.: 321

Project No.: <u>175539022</u>

Sample Description: brown lean clay, moist

Nmc: <u>20.5 %</u>

Visual Notes: N/A


Test Method: ASTM D 698 - Method A

Prepared: Dry

Oversized Fraction: < 5 % Rammer: Mechanical

Gs - Fines: <u>Assumed</u>

Mold Weight	2041 grams		Moisture Determination				
		Wet Soil					
Wet Weight	Wet Weight	and Can	Dry Soil and		Water	Dry	
plus Mold	minus Mold	Weight	Can Weight	Can Weight	Content	Density	
(grams)	(grams)	(grams)	(grams)	(grams)	(%)	(pcf)	
3899	1858	421.72	374.30	53.84	14.8	107.8	
3948	1907	420.48	370.25	54.04	15.9	109.6	
3986	1945	425.03	373.25	75.37	17.4	110.4	
3946	1905	465.82	400.33	76.15	20.2	105.6	

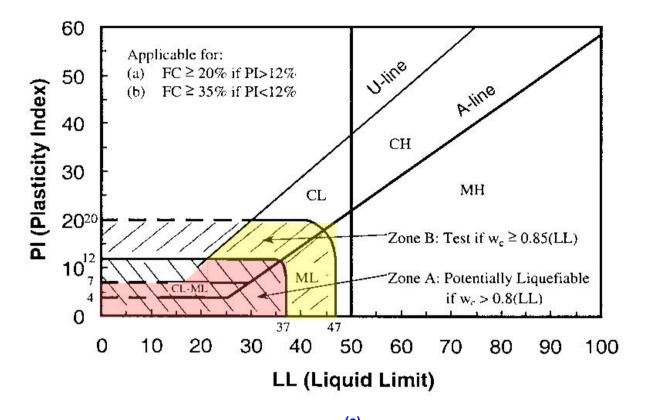
Maximum Dry Density 110.6 PCF Optimum Moisture Content 16.9 %

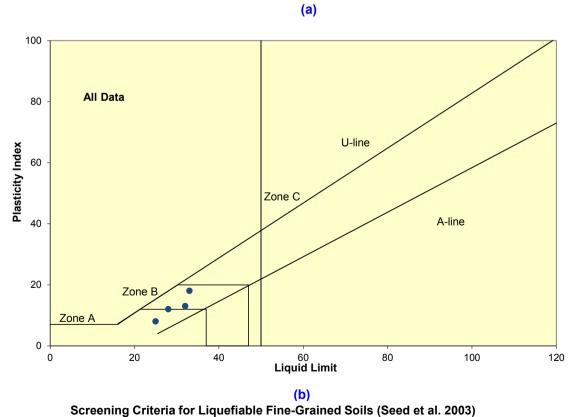
APPENDIX H

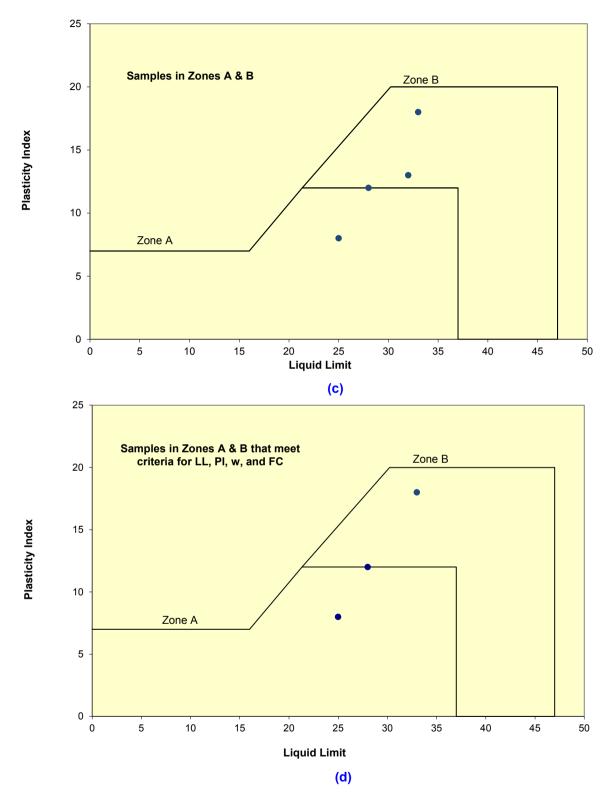
LIQUEFACTION ANALYSIS

BOILER SLAG POND DAM: 2015 CCR MANDATE

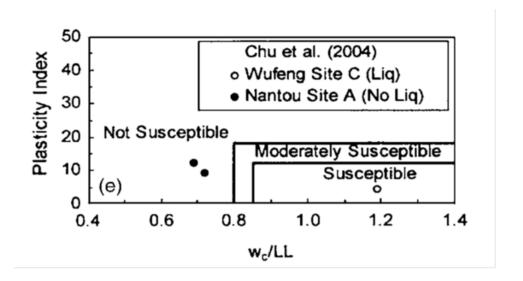
Liquefaction Susceptibility of Fine-Grained Soils

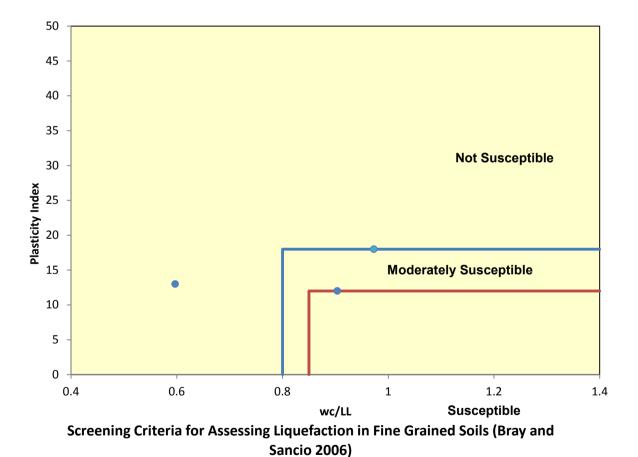

Stantec Project Number:	175553022
Project Name:	AEP Clifty Creek
Site/Structure Name:	West Bottom Ash Dam


Note: NP = Non-Plastic

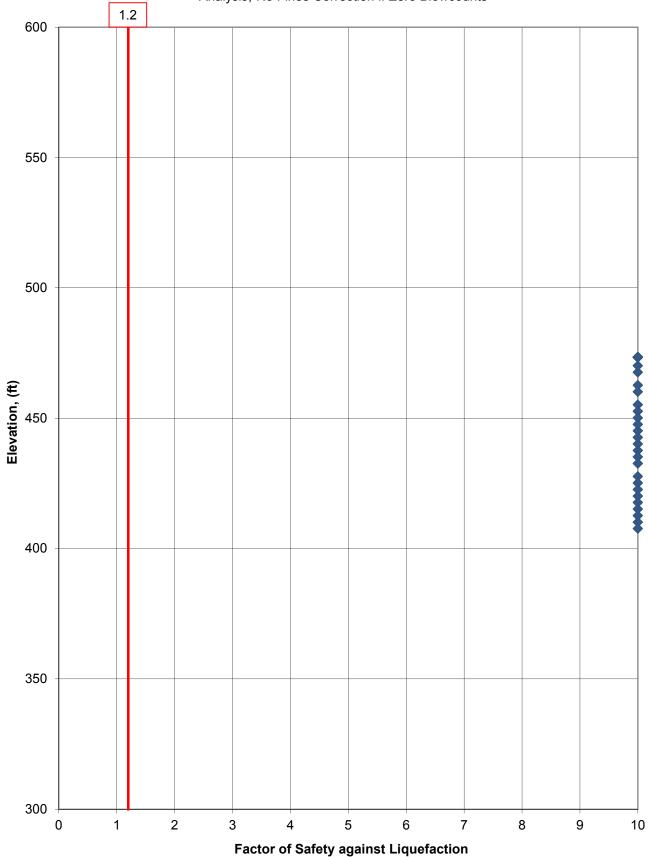

Lab ID	Boring	Depth(s)	Soil Classification	NMC (w _c) (%)	% Passing #200	% Passing #40	LL	PI
4	B-1	10.0-11.5, 12.5-14.0	CL	19.1	84	98.4	32	13
20	B-1	47.5-49.0, 50.0-51.5	CL	25.3	84.1	99.7	28	12
43	B-2	32.5-34.0, 35.0-36.5	CL	32.1	79.7	98.7	33	18
87	B-4	20.0-21.5, 22.5-24.0	CL	26.6	80.7	99.7	25	8
103	B-4	57.5-59.0, 60.0-61.5	GW-GM	10.9	5.7	13.6	NP	NP
129	B-5	55.0-56.5, 57.5-59.0	ML	24.9	54	99.9	NP	NP

Sand-like versus Clay-like Behavior (-1 indicates result does not meet criteria, green shading indicates result does meet criteria, no results shown for non-plastic material)														
	Using Crite	eria publishe	d by Seed 6	et al (2003)		published	Criteria d by Idriss nger (2008)	Using criteria published by MSHA (2010)				Overall Judgement based on 3 methods (sand-like or clay- like)		
	ria for sand- havior	Meets	s criteria for	clay-like bel	navior	Meets criteria for sand-like behavior	Meets criteria for clay-like behavior	Meets criteria for sand-like behavior	Meets criteria for clay-like behavior	Borderline soils (treat as sand-like)				
LL in Zone A (see plot)	PI in Zone A (see plot)	LL in Zone B (see plot)	PI in Zone B (see plot)	LL in Zone C (see plot)	PI in Zone C (see plot)	PI < 7	PI >= 7	PI <= 7		7 < PI < 10, or does not meet P40 or P200				
								Ц						
-1	-1	32	13	-1	-1	-1	13	-1	13	-1	Н	Clay-like		
28 -1	12 -1	-1 33	-1 18	-1 -1	-1 -1	-1 -1	12 18	-1 -1	12 18	-1 -1	Н	Clay-like Clay-like		
25	8	-1	-1	-1	-1 -1	-1	8	-1	-1	8	H	Sand-like		
						<u> </u>		•		,	H	Sand-like		
											П	Sand-like		

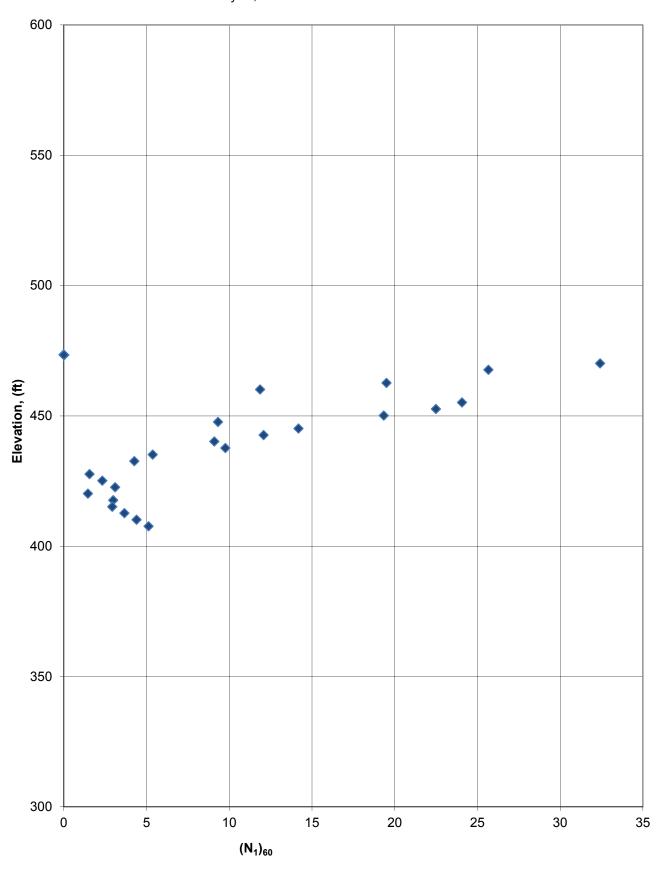

Fine_Grained_Liq_Screening_West Bottom Ash Dam.xdsx



Screening Criteria for Liquefiable Fine-Grained Soils (Seed et al. 2003)

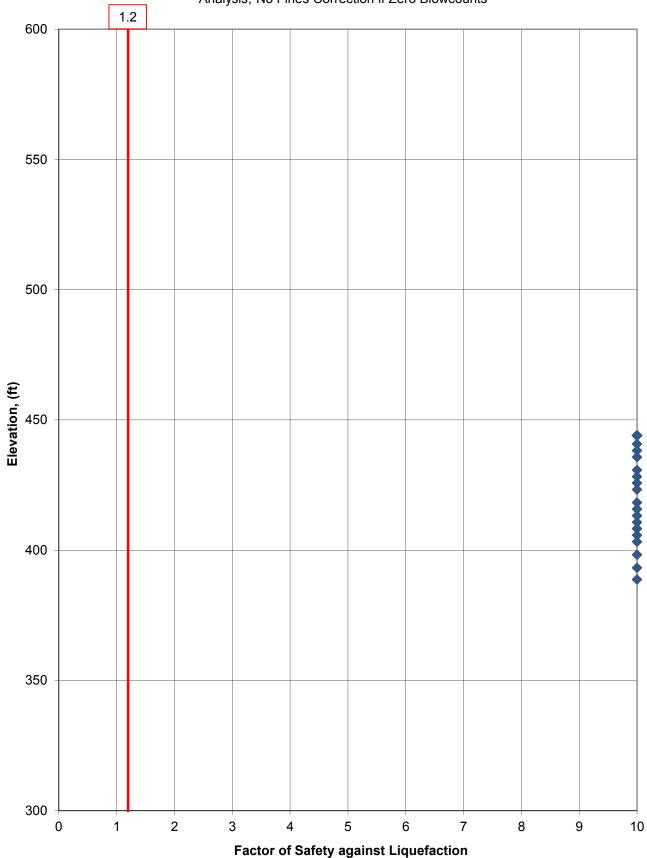


Fine_Grained_Liq_Screening_West Bottom Ash Dam.xlsx

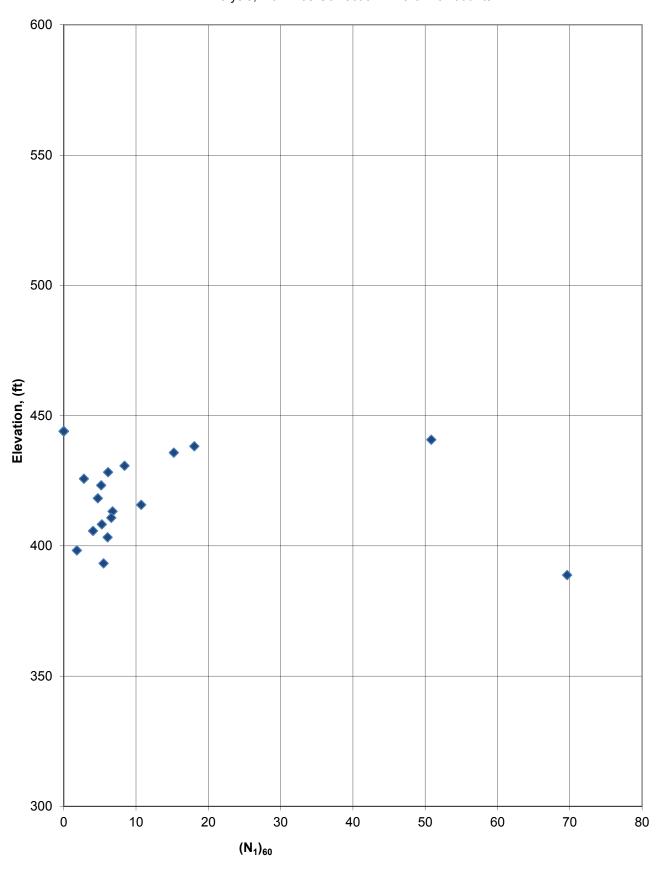

COARSE-GRAINED ANALYSIS	

												EQ Source	urce Event (MCE, OBE, etc.)									Shake Stress Curve Fit Parameters		
												0				0	1				m4:	0		
												a max (g)					-				m3:	0		
Depth of	Vert. Total	Vert. Total	Static Pore	Vert. Eff.	Vert. Eff.							0.085				EQ Motion File					m2:	0		
Mid. Pt.	Stress	Stress	Pressure	Stress	Stress			Equivalent				EQ Mag (Mw)				0]				m1:	0		
of Sample	during EQ	during EQ	during EQ	during EQ			(Clean Sand				7.7		Simplified	Simplified	Max. Shake	Avg. Shake		g SHAKE Da			Simplified		
(ft.)	(tsf)	w/ Fill (tsf)	(tsf)	(tsf)	w/ Fill (tsf)			N-Value				Mag. Scaling	CRR	Stress Reduction	CSR eq	Stress (psf)	Stress (psf)	CSR eq	FS liq	FS liq	FS liq	FS liq		
Z	σ_{v}	$\sigma_{v \text{ with fill}}$	u	σ' _v	$\sigma'_{v \text{ with fill}}$	Alpha I	Beta I	(N ₁)60cs	CRR7.5	Ksigma	Kalpha	Factor (Cm)	Design EQ	Coeff., r _d	Design EQ	Design EQ	Design EQ	Design EQ	Design EQ	for plot	Design EQ	for plot		
				Boring ID:	B-1							Note: A factor of	f safety shown	as "NA" implies that t	he soil type is									
			Top of FIII Elevation: 473.4 not appropriately evaluated using this methodology. This applies to																					
		Fill Height: 0.0 soils classified as CL, CH, CL-ML and MH. These soils should be																						
				Unit Weight:	125									ne-grained soils. Also										
			Fill Total Stress: 0.00 coarse grained soils with equivalent clean sand N-values greater than 30																					
												are resistant to	liquefaction.											
	totstr-top 0.16		u-top 0.00	effstr-top 0.16																				
3.3	0.16	0.20	0.00	0.16	0.20	NA	NA	NA	NA	NA	NA	0.95	NA	0.994	0.055	0	0	0.000	NA	10.0	NA	10.00		
5.8	0.20	0.20	0.00	0.20	0.20	NA	NA	NA	NA NA	NA NA	NA	0.95	NA NA	0.989	0.055	0	0	0.000	NA NA	10.0	NA NA	10.00		
10.8	0.67	0.67	0.00	0.67	0.67	NA	NA	NA	NA	NA	NA	0.95	NA.	0.978	0.054	0	0	0.000	NA	10.0	NA.	10.00		
13.3	0.83	0.83	0.00	0.83	0.83	NA	NA	NA	NA	NA	NA	0.95	NA.	0.972	0.054	0	0	0.000	NA	10.0	NA.	10.00		
18.3	1.14	1.14	0.00	1.14	1.14	NA	NA	NA	NA	NA	NA	0.95	NA	0.961	0.053	Ō	Ö	0.000	NA	10.0	NA	10.00		
20.8	1.30	1.30	0.00	1.30	1.30	NA	NA	NA	NA	NA	NA	0.95	NA	0.955	0.053	0	0	0.000	NA	10.0	NA	10.00		
23.3	1.45	1.45	0.00	1.45	1.45	NA	NA	NA	NA	NA	NA	0.95	NA	0.948	0.052	0	0	0.000	NA	10.0	NA	10.00		
25.8	1.61	1.61	0.00	1.61	1.61	NA	NA	NA	NA	NA	NA	0.95	NA	0.939	0.052	0	0	0.000	NA	10.0	NA	10.00		
28.3	1.77	1.77	0.00	1.77	1.77	NA	NA	NA	NA	NA	NA	0.95	NA	0.929	0.051	0	0	0.000	NA	10.0	NA	10.00		
30.8	1.92	1.92	0.00	1.92	1.92	NA	NA	NA	NA	NA	NA	0.95	NA	0.917	0.051	0	0	0.000	NA	10.0	NA	10.00		
33.3	2.08	2.08	0.00	2.08	2.08	NA	NA	NA	NA	NA	NA	0.95	NA	0.902	0.050	0	0	0.000	NA	10.0	NA	10.00		
35.8	2.23	2.23	0.00	2.23	2.23	NA	NA	NA	NA	NA	NA	0.95	NA	0.885	0.049	0	0	0.000	NA	10.0	NA	10.00		
38.3	2.39	2.39 2.55	0.04	2.35	2.35	NA	NA	NA	NA	NA	NA NA	0.95	NA	0.866	0.049	0	0	0.000	NA	10.0	NA	10.00		
40.8 45.8	2.55 2.86	2.55	0.12 0.27	2.43 2.59	2.43 2.59	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.95 0.95	NA NA	0.844 0.796	0.049 0.049	0	0	0.000	NA NA	10.0 10.0	NA NA	10.00 10.00		
48.3	3.02	3.02	0.27	2.59	2.59	NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.95	NA NA	0.796	0.049	0	0	0.000	NA NA	10.0	NA NA	10.00		
50.8	3.17	3.17	0.43	2.74	2.74	NA	NA	NA	NA	NA	NA	0.95	NA NA	0.745	0.048	0	0	0.000	NA	10.0	NA NA	10.00		
53.3	3.33	3.33	0.43	2.82	2.82	NA	NA	NA	NA	NA	NA	0.95	NA NA	0.720	0.047	0	0	0.000	NA	10.0	NA NA	10.00		
55.8	3.48	3.48	0.59	2.90	2.90	NA	NA	NA	NA	NA	NA	0.95	NA.	0.696	0.046	0	ő	0.000	NA	10.0	NA.	10.00		
58.3	3.64	3.64	0.66	2.98	2.98	NA	NA	NA	NA	NA	NA	0.95	NA	0.674	0.046	0	Ö	0.000	NA	10.0	NA	10.00		
60.8	3.80	3.80	0.74	3.06	3.06	NA	NA	NA	NA	NA	NA	0.95	NA	0.653	0.045	0	Ö	0.000	NA	10.0	NA	10.00		
63.3	3.95	3.95	0.82	3.13	3.13	NA	NA	NA	NA	NA	NA	0.95	NA	0.634	0.044	0	0	0.000	NA	10.0	NA	10.00		
65.8	4.11	4.11	0.90	3.21	3.21	NA	NA	NA	NA	NA	NA	0.95	NA	0.617	0.044	0	0	0.000	NA	10.0	NA	10.00		

Clifty Creek AEP, Boring = B-1, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

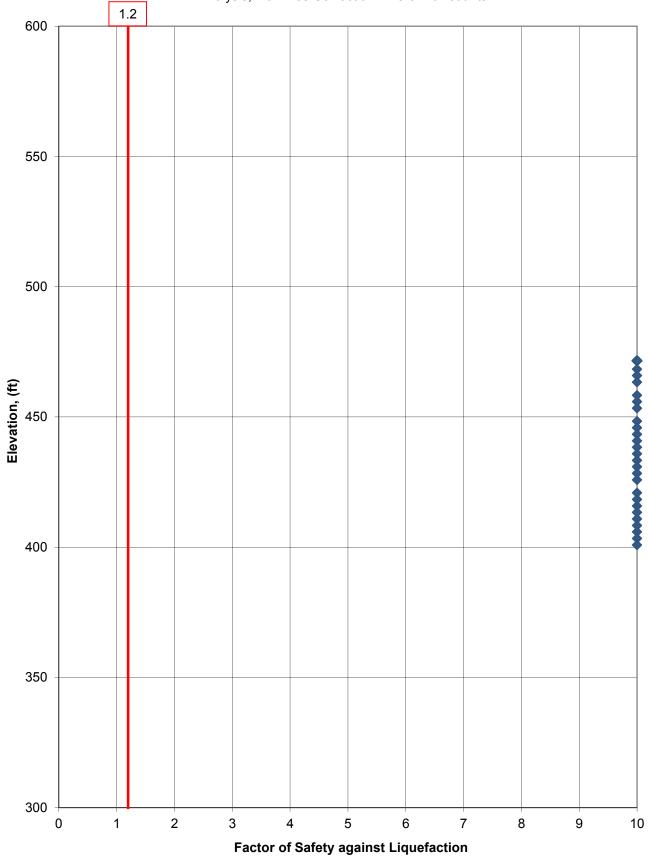


Clifty Creek AEP, Boring = B-1, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

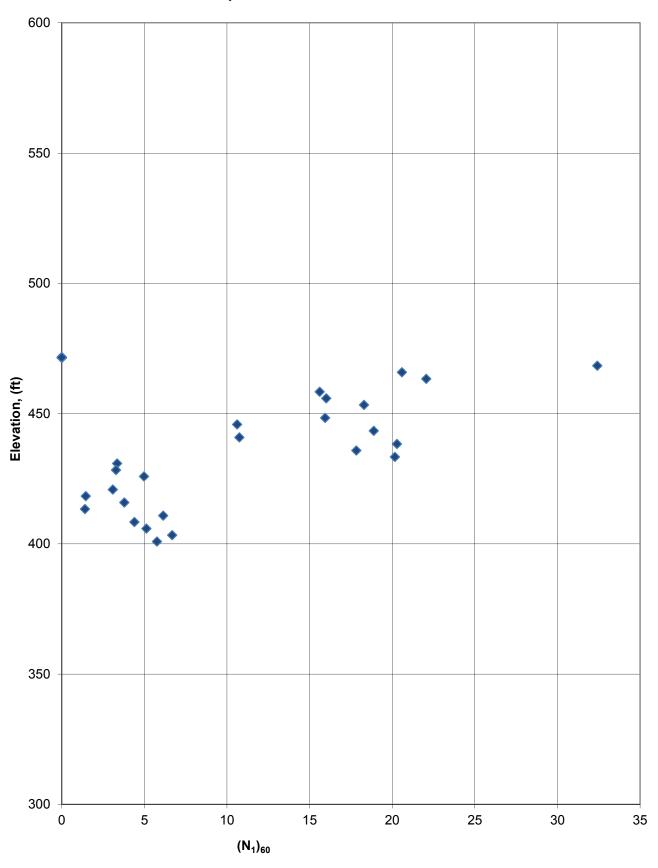


Depth of Mid. Pt. of Sample (ft.) z	Vert. Total Stress e during EQ (tsf) σ _v	Vert. Total Stress during EQ w/ Fill (tsf) $\sigma_{_{V with fill}}$	Static Pore Pressure during EQ (tsf) u	Stress	Vert. Eff. Stress during EQ w/ Fill (tsf) of'_v with fill	Alpha I		Equivalen Clean San N-Value (N1)60cs		Ksigma	Kalpha	EQ Source 0 a max (g) 0.085 EQ Mag (Mw) 7.7 Mag. Scaling Factor (Cm)	CRR Design EQ	Simplified Stress Reduction Coeff., r _d	Simplified CSR eq Design EQ	Event (MCE, OBE, et 0 EQ Motion File 0 Max. Shake Stress (psf) Design EQ	c.) Avg. Shake Stress (psf) Design EQ	CSR eq	ing SHAKE D FS liq Design EQ	lata FS liq for plot	m4: m3: m2: m1:	Curve Fit Parameters 0 0 0 0 Simplified FS liq for plot
				Boring ID:	B-2								,	as "NA" implies that th	,,							
			Top of F	Fill Elevation:										ng this methodology.								
			Fill Total	Fill Height: Unit Weight:									, ,	ML and MH. These so ne-grained soils. Also,		.+						
				Total Stress:)								alent clean sand N-va	,							
						1						are resistant to	•		grouter ura	. • • •						
	totstr-top	1	u-top	effstr-top																		
	0.16		0.00	0.16													_					
3.3	0.20	0.20	0.00	0.20	0.20	NA	NA	NA	NA	NA	NA	0.95	NA	0.994	0.055	0	0	0.000	NA	10.0	NA	10.0
5.8 8.3	0.36 0.52	0.36 0.52	0.00 0.00	0.36 0.52	0.36 0.52	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.95 0.95	NA NA	0.989 0.983	0.055 0.054	0	0	0.000 0.000	NA NA	10.0 10.0	NA NA	10.0 10.0
0.3 13.3	0.83	0.83	0.00	0.32	0.32	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.95	NA NA	0.963	0.054	0	0	0.000	NA NA	10.0	NA NA	10.0
15.8	0.98	0.98	0.02	0.96	0.96	NA	NA	NA	NA	NA	NA	0.95	NA	0.967	0.055	0	0	0.000	NA	10.0	NA NA	10.0
18.3	1.14	1.14	0.10	1.04	1.04	NA	NA	NA	NA	NA	NA	0.95	NA	0.961	0.058	0	0	0.000	NA	10.0	NA	10.0
20.8	1.30	1.30	0.18	1.12	1.12	NA	NA	NA	NA	NA	NA	0.95	NA	0.955	0.061	0	0	0.000	NA	10.0	NA	10.0
25.8	1.61	1.61	0.34	1.27	1.27	NA	NA	NA	NA	NA	NA	0.95	NA	0.939	0.066	0	0	0.000	NA	10.0	NA	10.0
28.3	1.77	1.77	0.41	1.35	1.35	NA	NA	NA	NA	NA	NA	0.95	NA	0.929	0.067	0	0	0.000	NA	10.0	NA	10.0
30.8	1.92	1.92	0.49	1.43	1.43	NA	NA	NA	NA	NA	NA	0.95	NA	0.917	0.068	0	0	0.000	NA	10.0	NA	10.0
33.3	2.08	2.08	0.57	1.51	1.51	NA	NA	NA	NA	NA	NA	0.95	NA	0.902	0.069	0	0	0.000	NA	10.0	NA	10.0
35.8	2.23	2.23	0.65	1.59	1.59	NA	NA	NA	NA	NA	NA	0.95	NA	0.885	0.069	0	0	0.000	NA	10.0	NA	10.0
38.3	2.39	2.39	0.73	1.67	1.67	NA	NA	NA	NA	NA	NA	0.95	NA	0.866	0.069	0	U	0.000	NA	10.0	NA	10.0
40.8	2.55	2.55	0.80	1.74	1.74	NA	NA	NA	NA	NA	NA	0.95	NA NA	0.844	0.068	0	U	0.000	NA	10.0	NA NA	10.0
45.8 50.8	2.86 3.17	2.86 3.17	0.96 1.12	1.90 2.06	1.90 2.06	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.95 0.95	NA NA	0.796 0.745	0.066 0.063	0	U	0.000 0.000	NA NA	10.0 10.0	NA NA	10.0 10.0
55.3	3.17 3.45	3.17 3.45	1.12	2.06	2.06	0.02	1.00	70	NA NA	0.781	1.000	0.95	NA NA	0.745 0.701	0.063	0	0	0.000	NA NA	10.0	NA NA	10.0

Clifty Creek AEP, Boring = B-2, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

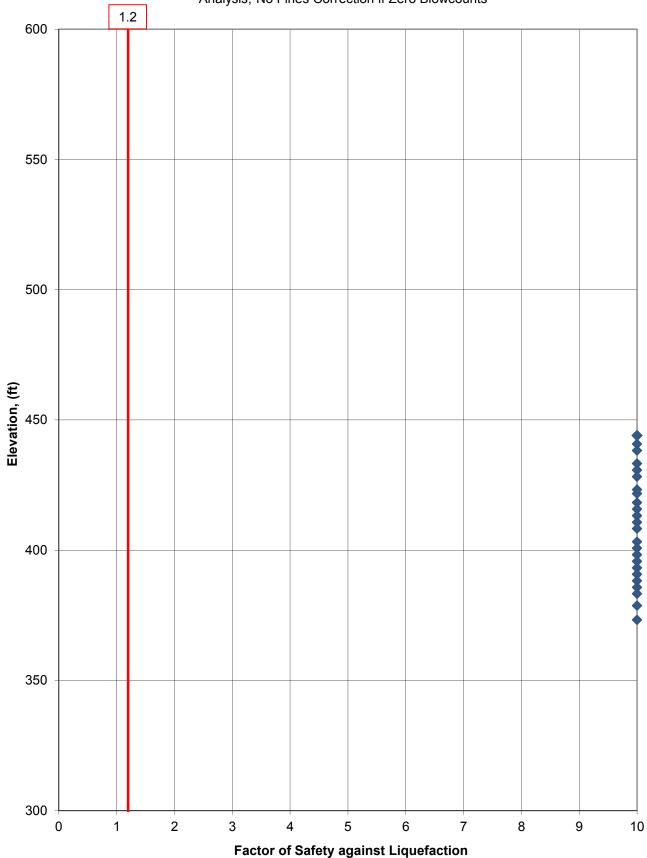


Clifty Creek AEP, Boring = B-2, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

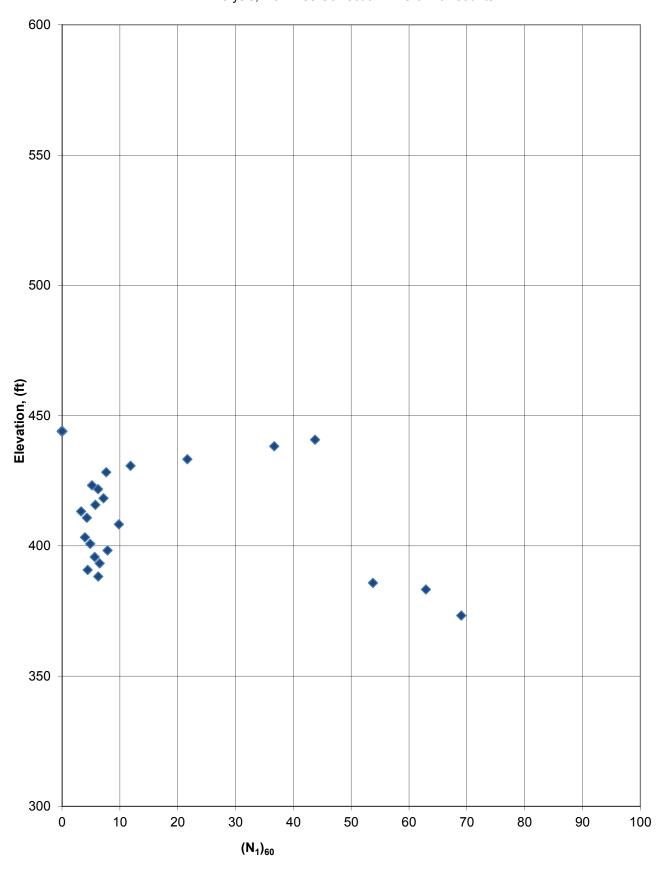


Depth of Mid. Pt. of Sample (ft.) z	Vert. Total Stress during EQ (tsf) σ _v	Vert. Total Stress during EQ w/ Fill (tsf) $\sigma_{v \text{with fill}}$	Static Pore Pressure during EQ (tsf) u	Vert. Eff. Stress during EQ (tsf) o' _v	Vert. Eff. Stress during EQ w/ Fill (tsf) o'v with fill	Alpha I		Equivalent Clean Sand N-Value (N1)60cs		Ksigma	Kalpha	EQ Source 0 a max (g) 0.085 EQ Mag (Mw) 7.7 Mag. Scaling Factor (Cm)	CRR Design EQ	Simplified Stress Reduction Coeff., r _d	Simplified CSR eq Design EQ	Event (MCE, OBE, etc 0 EQ Motion File 0 Max. Shake Stress (psf) Design EQ	Avg. Shake Stress (psf) Design EQ	Usir CSR eq Design EQ	ng SHAKE D FS liq Design EQ	FS liq	Shake Stress m4: m3: m2: m1: FS liq Design EQ	S Curve Fit Parameters 0 0 0 0 Simplified FS liq for plot
			Fill Total	Boring ID: ill Elevation: Fill Height: Unit Weight: Total Stress:	B-3 471.6 0.0 125 0.00							not appropriatel soils classified a evaluated using	y evaluated using as CL, CH, CL-I omethods for fin soils with equive	as "NA" implies that t ng this methodology. ML and MH. These so le-grained soils. Also alent clean sand N-va	This applies to oils should be now, "NA" implies tha							
	totstr-top		u-top	effstr-top																		
3.3	0.16 0.20	」 Ⅰ 0.20	0.00	0.16 0.20	0.20	NA	NA	NA	NA	NA	NA	0.95	NA	0.994	0.055	0	0	0.000	NA	10.0	NA	10.00
5.8	0.36	0.36	0.00	0.26	0.26	NA	NA	NA	NA	NA	NA	0.95	NA	0.989	0.055	0	0	0.000	NA	10.0	NA NA	10.00
8.3	0.52	0.52	0.00	0.52	0.52	NA	NA	NA	NA	NA	NA	0.95	NA	0.983	0.054	0	0	0.000	NA	10.0	NA.	10.00
13.3	0.83	0.83	0.00	0.83	0.83	NA	NA	NA	NA	NA	NA	0.95	NA	0.972	0.054	0	0	0.000	NA	10.0	NA	10.00
15.8	0.98	0.98	0.00	0.98	0.98	NA	NA	NA	NA	NA	NA	0.95	NA	0.967	0.053	0	0	0.000	NA	10.0	NA	10.00
18.3	1.14	1.14	0.00	1.14	1.14	NA	NA	NA	NA	NA	NA	0.95	NA	0.961	0.053	0	0	0.000	NA	10.0	NA	10.00
23.3	1.45	1.45	0.00	1.45	1.45	NA	NA	NA	NA	NA	NA	0.95	NA	0.948	0.052	0	0	0.000	NA	10.0	NA	10.00
25.8	1.61	1.61	0.00	1.61	1.61	NA	NA	NA	NA	NA	NA	0.95	NA	0.939	0.052	0	0	0.000	NA	10.0	NA	10.00
28.3	1.77	1.77	0.00	1.77	1.77	NA	NA	NA	NA	NA	NA	0.95	NA	0.929	0.051	0	0	0.000	NA	10.0	NA	10.00
30.8	1.92	1.92	0.00	1.92	1.92	NA	NA	NA	NA	NA	NA	0.95	NA	0.917	0.051	0	0	0.000	NA	10.0	NA	10.00
33.3	2.08	2.08	0.00	2.08	2.08	NA	NA	NA	NA	NA	NA	0.95	NA	0.902	0.050	0	0	0.000	NA	10.0	NA	10.00
35.8	2.23	2.23	0.00	2.23	2.23	NA	NA	NA	NA	NA	NA	0.95	NA	0.885	0.049	0	0	0.000	NA	10.0	NA	10.00
38.3	2.39	2.39	0.07	2.32	2.32	NA	NA	NA	NA	NA	NA	0.95	NA	0.866	0.049	0	0	0.000	NA	10.0	NA	10.00
40.8	2.55	2.55	0.15	2.40	2.40	NA	NA	NA	NA	NA	NA	0.95	NA	0.844	0.050	0	0	0.000	NA	10.0	NA	10.00
43.3	2.70	2.70	0.23	2.48	2.48	NA	NA	NA	NA	NA	NA	0.95	NA	0.821	0.049	0	0	0.000	NA	10.0	NA	10.00
45.8	2.86	2.86	0.30	2.56	2.56	NA	NA	NA	NA	NA	NA	0.95	NA	0.796	0.049	0	0	0.000	NA	10.0	NA	10.00
50.8	3.17	3.17	0.46	2.71	2.71	NA	NA	NA	NA	NA	NA	0.95	NA	0.745	0.048	0	0	0.000	NA	10.0	NA	10.00
53.3	3.33	3.33	0.54	2.79	2.79	NA	NA	NA	NA	NA	NA	0.95	NA	0.720	0.047	0	0	0.000	NA	10.0	NA	10.00
55.8	3.48	3.48	0.62	2.87	2.87	NA	NA	NA	NA	NA	NA	0.95	NA	0.696	0.047	0	0	0.000	NA	10.0	NA	10.00
58.3	3.64	3.64	0.69	2.95	2.95	NA	NA	NA	NA	NA	NA	0.95	NA	0.674	0.046	0	0	0.000	NA	10.0	NA	10.00
60.8	3.80	3.80	0.77	3.02	3.02	NA	NA	NA	NA	NA	NA	0.95	NA	0.653	0.045	0	0	0.000	NA	10.0	NA	10.00
63.3	3.95	3.95	0.85	3.10	3.10	NA	NA	NA	NA	NA	NA	0.95	NA	0.634	0.045	0	0	0.000	NA	10.0	NA	10.00
65.8	4.11	4.11	0.93	3.18	3.18	NA	NA	NA	NA	NA	NA	0.95	NA	0.617	0.044	U	Ü	0.000	NA	10.0	NA	10.00
68.3	4.27	4.27	1.01	3.26	3.26	NA	NA	NA	NA	NA	NA	0.95	NA	0.602	0.044	U	Ü	0.000	NA	10.0	NA	10.00
70.8	4.42	4.42	1.08	3.34	3.34	NA	NA	NA	NA	NA	NA	0.95	NA	0.588	0.043	0	U	0.000	NA	10.0	NA	10.00

Clifty Creek AEP, Boring = B-3, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

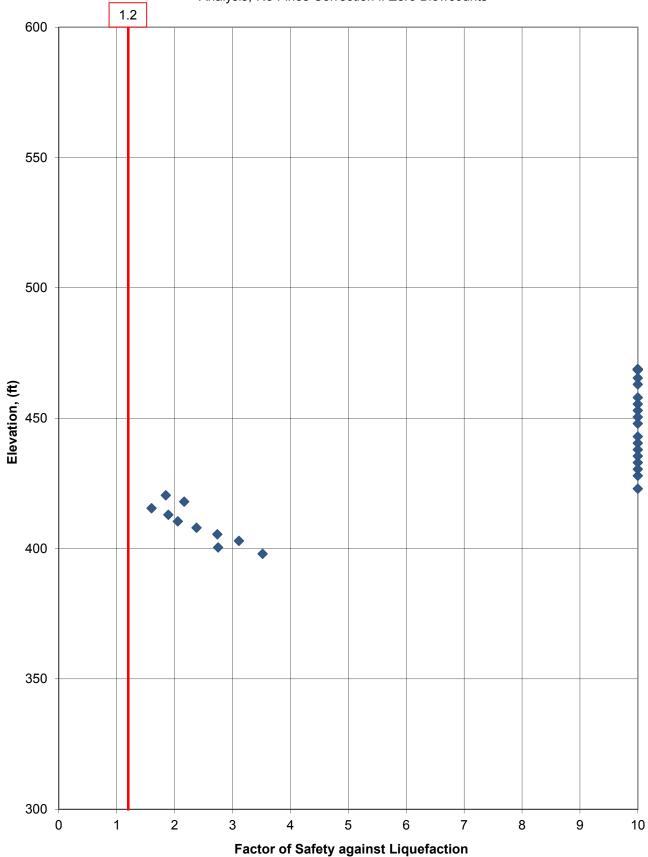


Clifty Creek AEP, Boring = B-3, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

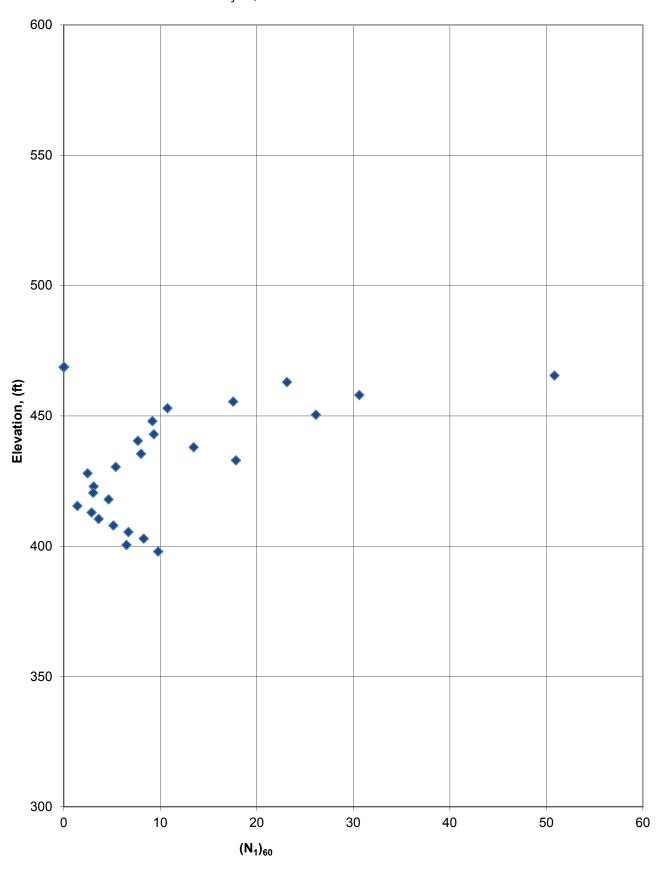


Depth of Mid. Pt. of Sample (ft.) z	Vert. Total Stress during EQ (tsf) σ _v	Vert. Total Stress during EQ w/ Fill (tsf) $\sigma_{v with fill}$	Static Pore Pressure during EQ (tsf) u	Stress	Vert. Eff. Stress during EQ w/ Fill (tsf) o' _{v with fill}	Alpha I	(Equivalent Clean Sand N-Value (N1)60cs	CRR7.5	Ksigma	Kalpha	EQ Source 0 a max (g) 0.085 EQ Mag (Mw) 7.7 Mag. Scaling Factor (Cm)	CRR Design EQ	Simplified Stress Reduction Coeff., r _d	Simplified CSR eq Design EQ	Event (MCE, OBE, et 0 EQ Motion File 0 Max. Shake Stress (psf) Design EQ	Avg. Shake Stress (psf) Design EQ	CSR eq	ng SHAKE D FS liq Design EQ	ata FS liq for plot	Shake Stress m4: m3: m2: m1: FS liq Design EQ	Curve Fit Parameters 0 0 0 Simplified FS liq for plot
		-	Fill Total Fill	Boring ID: Fill Elevation: Fill Height: Unit Weight: Total Stress:	B-4 444.0 0.0 125 0.00							not appropriate soils classified evaluated using	ly evaluated usi as CL, CH, CL-I g methods for fir soils with equiv	as "NA" implies that t ing this methodology. ML and MH. These so ne-grained soils. Also, alent clean sand N-va	This applies to pils should be , "NA" implies that							
	totstr-top		u-top	effstr-top																		
3.3	0.16	」 0.20	0.00	0.16 0.20	0.20	NA	NA	NA	NA	NA	NA	0.95	NA	0.994	0.055	0	0	0.000	NA	10.0	NA	10.00
5.8	0.36	0.36	0.00	0.36	0.36	NA	NA	NA	NA	NA	NA	0.95	NA NA	0.989	0.055	0	Ö	0.000	NA	10.0	NA	10.00
10.8	0.67	0.67	0.00	0.67	0.67	NA	NA	NA	NA	NA	NA	0.95	NA	0.978	0.054	0	0	0.000	NA	10.0	NA	10.00
13.3	0.83	0.83	0.00	0.83	0.83	NA	NA	NA	NA	NA	NA	0.95	NA	0.972	0.054	0	0	0.000	NA	10.0	NA	10.00
15.8	0.98	0.98	0.00	0.98	0.98	NA	NA	NA	NA	NA	NA	0.95	NA	0.967	0.053	0	0	0.000	NA	10.0	NA	10.00
20.8	1.30	1.30	0.15	1.15	1.15	NA	NA	NA	NA	NA	NA	0.95	NA	0.955	0.060	0	0	0.000	NA	10.0	NA	10.00
22.3	1.39	1.39	0.20	1.20	1.20	NA	NA	NA	NA	NA	NA	0.95	NA	0.951	0.061	0	0	0.000	NA	10.0	NA	10.00
25.8	1.61	1.61	0.30	1.31	1.31	NA	NA	NA	NA	NA	NA	0.95	NA	0.939	0.064	0	0	0.000	NA	10.0	NA	10.00
28.3	1.77	1.77	0.38	1.38	1.38	NA	NA	NA	NA	NA	NA	0.95	NA	0.929	0.066	0	0	0.000	NA	10.0	NA	10.00
30.8	1.92	1.92	0.46	1.46	1.46	NA	NA	NA	NA	NA	NA	0.95	NA	0.917	0.067	0	0	0.000	NA	10.0	NA	10.00
33.3	2.08	2.08	0.54	1.54	1.54	NA	NA	NA	NA	NA	NA	0.95	NA	0.902	0.067	0	0	0.000	NA	10.0	NA	10.00
35.8	2.23	2.23	0.62	1.62	1.62	NA	NA	NA	NA	NA	NA	0.95	NA	0.885	0.068	0	0	0.000	NA	10.0	NA	10.00
40.8	2.55	2.55	0.77	1.77	1.77	NA	NA	NA	NA	NA	NA	0.95	NA	0.844	0.067	0	0	0.000	NA	10.0	NA	10.00
43.3	2.70	2.70	0.85	1.85	1.85	NA	NA	NA	NA	NA	NA	0.95	NA	0.821	0.066	0	0	0.000	NA	10.0	NA	10.00
45.8	2.86	2.86	0.93	1.93	1.93	NA	NA	NA	NA	NA	NA	0.95	NA	0.796	0.065	0	0	0.000	NA	10.0	NA	10.00
48.3	3.02	3.02	1.01	2.01	2.01	NA	NA	NA	NA	NA	NA	0.95	NA	0.771	0.064	0	0	0.000	NA	10.0	NA	10.00
50.8	3.17	3.17	1.08	2.09	2.09	NA	NA	NA	NA	NA	NA	0.95	NA	0.745	0.063	0	0	0.000	NA	10.0	NA	10.00
53.3	3.33	3.33	1.16	2.17	2.17	NA	NA	NA	NA	NA	NA	0.95	NA	0.720	0.061	0	0	0.000	NA	10.0	NA	10.00
55.8	3.48	3.48	1.24	2.24	2.24	NA	NA	NA	NA	NA	NA	0.95	NA	0.696	0.060	0	0	0.000	NA	10.0	NA	10.00
58.3	3.64	3.64	1.32	2.32	2.32	0.02	1.00	54	NA	0.764	1.000147	0.95	NA	0.674	0.058	0	0	0.000	NA	10.0	NA	10.00
60.8	3.80	3.80	1.40	2.40	2.40	0.02	1.00	63	NA	0.754	1.000147	0.95	NA	0.653	0.057	0	0	0.000	NA	10.0	NA	10.00
65.3	4.08	4.08	1.54	2.54	2.54	0.02	1.00	1354	NA	0.737	1.000147	0.95	NA	0.620	0.055	0	0	0.000	NA	10.0	NA	10.00
70.8	4.42	4.42	1.71	2.71	2.71	0.02	1.00	69	NA	0.717	1.000147	0.95	NA	0.588	0.053	0	0	0.000	NA	10.0	NA	10.00

Clifty Creek AEP, Boring = B-4, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

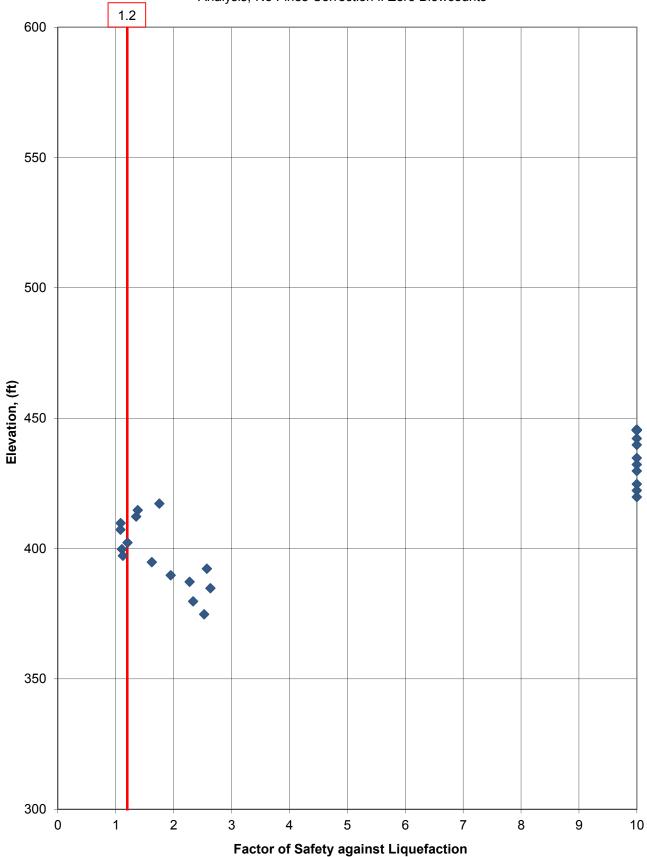


Clifty Creek AEP, Boring = B-4, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

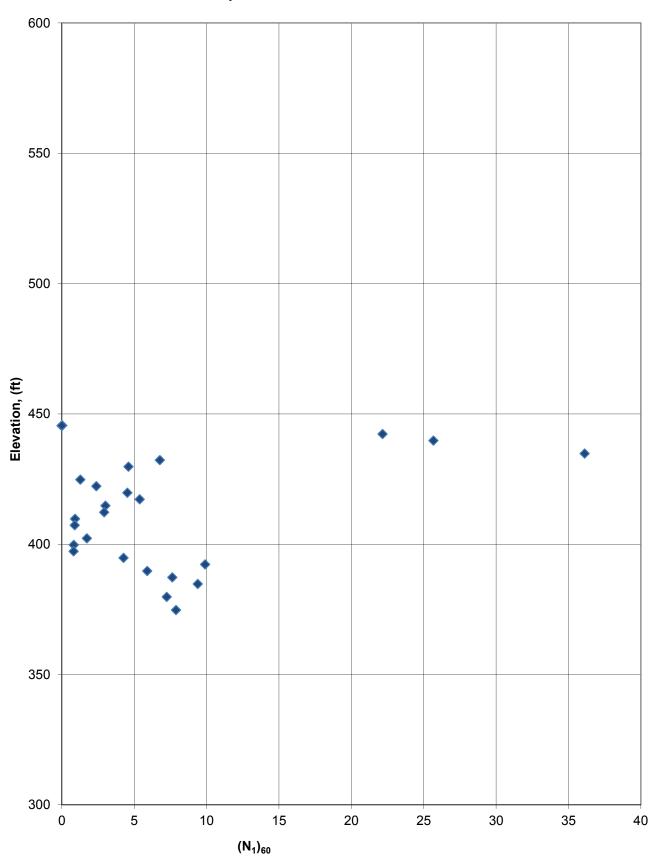


Depth of Mid. Pt. of Sample (ft.)	Vert. Total Stress during EQ (tsf) σ_v	Vert. Total Stress during EQ w/ Fill (tsf) $\sigma_{v with fill}$	Static Pore Pressure during EQ (tsf) u	Stress during EQ	Vert. Eff. Stress during EQ w/ Fill (tsf) o'v with fill	Alpha I	(Equivalent Clean Sand N-Value (N1)60cs	CRR7.5	Ksigma	Kalpha	EQ Source 0 a max (g) 0.085 EQ Mag (Mw) 7.7 Mag. Scaling Factor (Cm)	CRR Design EQ	Simplified Stress Reduction Coeff., r _d	Simplified CSR eq Design EQ	Event (MCE, OBE, et 0 EQ Motion File 0 Max. Shake Stress (psf) Design EQ	Avg. Shake Stress (psf)	CSR eq	ing SHAKE D FS liq Design EQ	FS liq	Shake Stress m4: m3: m2: m1: FS liq Design EQ	Curve Fit Parameters
			Top of I	Boring ID: Fill Elevation: Fill Height:	B-5 468.7							not appropriatel	y evaluated usir	as "NA" implies that to ng this methodology. ML and MH. These so	This applies to							
			Fill Total	Unit Weight:	125	5								e-grained soils. Also,		t						
			Fill	Total Stress:	0.00)								alent clean sand N-va	alues greater than	30						
	totstr-top	1	u-top	effstr-top								are resistant to	iquetaction.									
	0.16		0.00	0.16																		
3.3	0.20	0.20	0.00	0.20	0.20	NA	NA	NA	NA	NA	NA	0.95	NA	0.994	0.055	0	0	0.000	NA	10.0	NA	10.0
5.8 10.8	0.36 0.67	0.36 0.67	0.00	0.36 0.67	0.36 0.67	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.95 0.95	NA NA	0.989 0.978	0.055 0.054	0	0	0.000	NA NA	10.0 10.0	NA NA	10.0 10.0
13.3	0.83	0.83	0.00	0.83	0.83	NA NA	NA NA	NA	NA NA	NA NA	NA NA	0.95	NA NA	0.976	0.054	0	0	0.000	NA NA	10.0	NA NA	10.0
15.8	0.98	0.98	0.00	0.98	0.98	NA	NA	NA	NA	NA	NA	0.95	NA.	0.967	0.053	0	n	0.000	NA	10.0	NA NA	10.0
18.3	1.14	1.14	0.00	1.14	1.14	NA	NA	NA	NA	NA	NA	0.95	NA	0.961	0.053	Ö	ő	0.000	NA	10.0	NA	10.0
20.8	1.30	1.30	0.00	1.30	1.30	NA	NA	NA	NA	NA	NA	0.95	NA	0.955	0.053	0	0	0.000	NA	10.0	NA	10.0
25.8	1.61	1.61	0.00	1.61	1.61	NA	NA	NA	NA	NA	NA	0.95	NA	0.939	0.052	0	0	0.000	NA	10.0	NA	10.0
28.3	1.77	1.77	0.00	1.77	1.77	NA	NA	NA	NA	NA	NA	0.95	NA	0.929	0.051	0	0	0.000	NA	10.0	NA	10.0
30.8	1.92	1.92	0.00	1.92	1.92	NA	NA	NA	NA	NA	NA	0.95	NA	0.917	0.051	0	0	0.000	NA	10.0	NA	10.0
33.3	2.08	2.08	0.00	2.08	2.08	NA	NA	NA	NA	NA	NA	0.95	NA	0.902	0.050	0	0	0.000	NA	10.0	NA	10.0
35.8	2.23	2.23	0.00	2.23	2.23	NA	NA	NA	NA	NA	NA	0.95	NA	0.885	0.049	0	0	0.000	NA	10.0	NA	10.0
38.3	2.39	2.39	0.07	2.32	2.32	NA	NA	NA	NA	NA	NA	0.95	NA	0.866	0.049	0	0	0.000	NA	10.0	NA	10.0
40.8 45.8	2.55 2.86	2.55 2.86	0.15 0.30	2.40 2.56	2.40 2.56	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.95 0.95	NA NA	0.844 0.796	0.050 0.049	0	0	0.000	NA NA	10.0 10.0	NA NA	10.0 10.0
48.3	3.02	3.02	0.38	2.63	2.63	5.00	1.20	9	0.101	0.937	1.000	0.95	0.090	0.796	0.049	0	0	0.000	#DIV/0!	#DIV/0!	1.8	1.85
50.8	3.17	3.17	0.46	2.71	2.71	5.00	1.20	11	0.101	0.932	1.000	0.95	0.104	0.745	0.048	0	0	0.000	#DIV/0!	#DIV/0!	2.2	2.17
53.3	3.33	3.33	0.54	2.79	2.79	5.00	1.20	7	0.085	0.941	1.000	0.95	0.076	0.720	0.047	0	0	0.000	#DIV/0!	#DIV/0!	1.6	1.60
55.8	3.48	3.48	0.62	2.87	2.87	5.00	1.20	8	0.100	0.935	1.000	0.95	0.088	0.696	0.047	ő	Ö	0.000	#DIV/0!	#DIV/0!	1.9	1.89
58.3	3.64	3.64	0.69	2.95	2.95	5.00	1.20	9	0.107	0.929	1.000003	0.95	0.094	0.674	0.046	Ö	Ö	0.000	#DIV/0!	#DIV/0!	2.1	2.05
60.8	3.80	3.80	0.77	3.02	3.02	5.00	1.20	11	0.123	0.920	1.000004	0.95	0.108	0.653	0.045	0	0	0.000	#DIV/0!	#DIV/0!	2.4	2.38
63.3	3.95	3.95	0.85	3.10	3.10	5.00	1.20	13	0.141		1.000006	0.95	0.122	0.634	0.045	0	0	0.000	#DIV/0!	#DIV/0!	2.7	2.74
65.8	4.11	4.11	0.93	3.18	3.18	5.00	1.20	15	0.159		1.000008	0.95	0.137	0.617	0.044	0	0	0.000	#DIV/0!	#DIV/0!	3.1	3.11
68.3	4.27	4.27	1.01	3.26	3.26	5.00	1.20	13	0.138	0.911	1.000006	0.95	0.120	0.602	0.044	0	0	0.000	#DIV/0!	#DIV/0!	2.8	2.75
70.8	4.42	4.42	1.08	3.34	3.34	5.00	1.20	17	0.178	0.898	1.00001	0.95	0.151	0.588	0.043	0	0	0.000	#DIV/0!	#DIV/0!	3.5	3.52

Clifty Creek AEP, Boring = B-5, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts



Clifty Creek AEP, Boring = B-5, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts



Depth of Mid. Pt. of Sample (ft.)	Vert. Total Stress during EQ (tsf) σ _v	Vert. Total Stress during EQ w/ Fill (tsf) $\sigma_{v with fill}$	Static Pore Pressure during EQ (tsf) u	Vert. Eff. Stress during EQ (tsf) σ' _ν	Vert. Eff. Stress during EQ w/ Fill (tsf) o' _{v with fill}	Alpha I	(Equivalent Clean Sand N-Value (N1)60cs	CRR7.5	Ksigma	Kalpha	EQ Source 0 a max (g) 0.085 EQ Mag (Mw) 7.7 Mag. Scaling Factor (Cm)	CRR Design EQ	Simplified Stress Reduction Coeff., r _d	Simplified CSR eq Design EQ	Event (MCE, OBE, etc 0 EQ Motion File 0 Max. Shake Stress (psf) Design EQ	Avg. Shake Stress (psf) Design EQ	CSR eq	ing SHAKE [FS liq Design EQ	FS liq	Shake Stress m4: m3: m2: m1: FS liq Design EQ	Curve Fit Parameters 0 0 0 Simplified FS liq for plot
			•	Boring ID: fill Elevation: Fill Height: Unit Weight:	B-6 445.5 0.0 125	 						not appropriately soils classified a	y evaluated usin s CL, CH, CL-N	is "NA" implies that th ig this methodology. T IL and MH. These soi e-grained soils. Also,	This applies to ils should be							
				Total Stress:								•	soils with equiva	e-grained soils. Also, lent clean sand N-val	•	30						
	totstr-top 0.16		u-top 0.00	effstr-top 0.16									.4.2.2000									
3.3	0.20	0.20	0.00	0.20	0.20	NA	NA	NA	NA	NA	NA	0.95	NA	0.994	0.055	0	0	0.000	NA	10.0	NA	10.0
5.8	0.36	0.36	0.00	0.36	0.36	NA	NA	NA	NA	NA	NA	0.95	NA	0.989	0.055	0	0	0.000	NA	10.0	NA	10.0
10.8	0.67	0.67	0.00	0.67	0.67	NA	NA	NA	NA	NA	NA	0.95	NA	0.978	0.054	0	0	0.000	NA	10.0	NA	10.0
13.3	0.83	0.83	0.00	0.83	0.83	NA	NA	NA	NA	NA	NA	0.95	NA	0.972	0.054	0	0	0.000	NA	10.0	NA	10.0
15.8	0.98	0.98	0.02	0.96	0.96	NA	NA	NA	NA	NA	NA	0.95	NA	0.967	0.055	0	0	0.000	NA	10.0	NA	10.0
20.8	1.30	1.30	0.18	1.12	1.12	NA	NA	NA	NA	NA	NA	0.95	NA	0.955	0.061	0	0	0.000	NA	10.0	NA	10.0
23.3	1.45	1.45	0.26	1.20	1.20	NA	NA	NA	NA	NA	NA	0.95	NA	0.948	0.064	0	0	0.000	NA	10.0	NA	10.0
25.8 28.3	1.61 1.77	1.61	0.34	1.27	1.27	NA 5.00	NA 1.20	NA 11	NA 0.126	NA 0.981	NA 1.000	0.95	NA 0.117	0.939 0.929	0.066 0.067	ŭ	0 0	0.000	NA #DIV/0!	10.0 #DIV/0!	NA 1.8	10.0 1.75
30.8	1.77	1.77 1.92	0.41 0.49	1.35 1.43	1.35 1.43	5.00 5.00	1.20 1.20	9	0.120	0.961	1.000	0.95 0.95	0.094	0.929	0.067	0	0	0.000 0.000	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	1.4	1.78
33.3	2.08	2.08	0.57	1.51	1.51	5.00	1.20	9	0.101	0.973	1.000	0.95	0.094	0.902	0.069	0	0	0.000	#DIV/0!	#DIV/0!	1.4	1.35
35.8	2.23	2.23	0.65	1.59	1.59	5.00	1.20	6	0.080	0.978	1.000	0.95	0.075	0.885	0.069	0	0	0.000	#DIV/0!	#DIV/0!	1.1	1.08
38.3	2.39	2.39	0.73	1.67	1.67	5.00	1.20	6	0.080	0.976	1.000	0.95	0.074	0.866	0.069	0	Ö	0.000	#DIV/0!	#DIV/0!	1.1	1.08
43.3	2.70	2.70	0.88	1.82	1.82	5.00	1.20	7	0.088	0.967	1.000	0.95	0.081	0.821	0.067	0	0	0.000	#DIV/0!	#DIV/0!	1.2	1.20
45.8	2.86	2.86	0.96	1.90	1.90	5.00	1.20	6	0.080	0.969	1.000	0.95	0.073	0.796	0.066	0	0	0.000	#DIV/0!	#DIV/0!	1.1	1.11
48.3	3.02	3.02	1.04	1.98	1.98	5.00	1.20	6	0.079	0.967	1.000	0.95	0.073	0.771	0.065	0	0	0.000	#DIV/0!	#DIV/0!	1.1	1.12
50.8	3.17	3.17	1.12	2.06	2.06	5.00	1.20	10	0.114	0.952	1.000	0.95	0.103	0.745	0.063	0	0	0.000	#DIV/0!	#DIV/0!	1.6	1.62
53.3	3.33	3.33	1.19	2.13	2.13	5.00	1.20	17	0.180	0.938	1.000	0.95	0.160	0.720	0.062	0	0	0.000	#DIV/0!	#DIV/0!	2.6	2.57
55.8	3.48	3.48	1.27	2.21	2.21	5.00	1.20	12	0.132	0.944	1.000	0.95	0.118	0.696	0.061	0	0	0.000	#DIV/0!	#DIV/0!	1.9	1.95
58.3	3.64	3.64	1.35	2.29	2.29	5.00	1.20	14	0.152	0.935	1.000008	0.95	0.135	0.674	0.059	0	0	0.000	#DIV/0!	#DIV/0!	2.3	2.27
60.8	3.80	3.80	1.43	2.37	2.37	5.00	1.20	16	0.173	0.928	1.000011	0.95	0.152	0.653	0.058	0	0	0.000	#DIV/0!	#DIV/0!	2.6	2.64
65.8	4.11	4.11	1.58	2.53	2.53	5.00	1.20	14	0.147	0.928	1.000007	0.95	0.130	0.617	0.055	0	0	0.000	#DIV/0!	#DIV/0!	2.3	2.34
70.8	4.42	4.42	1.74	2.68	2.68	5.00	1.20	14	0.155	0.922	1.000008	0.95	0.135	0.588	0.054	0	0	0.000	#DIV/0!	#DIV/0!	2.5	2.53

Clifty Creek AEP, Boring = B-6, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

Clifty Creek AEP, Boring = B-6, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

LANDFILL RUNOFF COLLECTION POND: 2015 CCR MANDATE

Liquefaction Susceptibility of Fine-Grained Soils

27.2-27.8 25.5-25.8 29.7-30.3 20.2-20.8 14.2-14.8

14.2-14.8 16.2-16.8 10.0-11.5 30.0-31.5 45.0-46.5 50.0-51.5 60.0-61.5 70.0-71.5 80.0-81.5 95.0-96.5

B-9 B-10

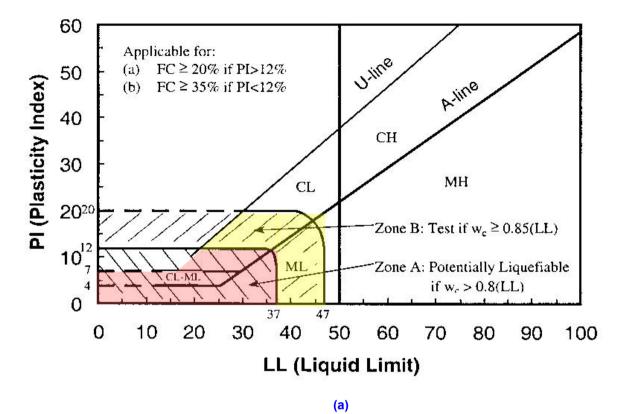
Stantec Project Number:	
Project Name:	AEP Clifty Creek
Site/Structure Name:	Landfill Runoff Collection Pond Dam

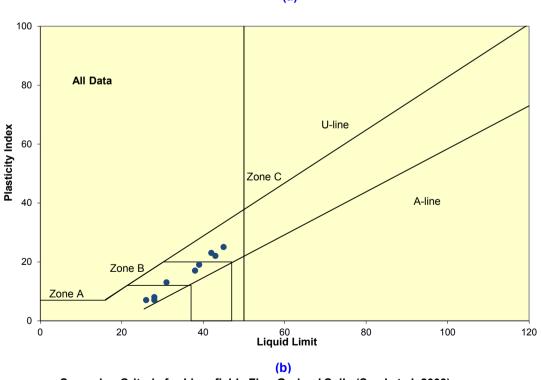
				Note: NP =	Non-Pl	astic		eria for sand- pehavior	Meet	s criteria for	clay-like beh	avior	Meets criteria for sand-like behavior	Meets criteria for clay-like behavior	Meets criteria for sand-like behavior		Borderline soils (treat as sand-like)		and potentia indicates susceptible,	ria for B (clay-like Ily liquefiable, -2 s zone A but -3 indicates not e to fines content	Clay-lik susceptit meet	e soil is ble (must	Clay-like no susce (must one or	ot ptible meet	Clay-lii moderately	ke soil is susceptible			
	Soil Classification	NMC (w _c) (%)	% Passing #200	% Passing #40	н	PI	LL in Zon A (see plot)	PI in Zone A (see plot)	LL in Zone B (see plot)	PI in Zone B (see plot)	LL in Zone C (see plot)	PI in Zone C (see plot)	PI < 7	PI >= 7	PI <= 7	P200>=20%,	7 < PI < 10, or does not meet P40 or P200		LL	PI	w _c /LL >= 0.85		w _c /LL < 0.80		Intermediat e w _c /LL (see plot)	Intermediat e PI (see plot)			
	CL	23.6	93.5	98	28	8	28	8	-1	-1	-1	-1	-1	8	-1	-1	8	Sand-like											
	CL	26.8	93.5	99.5	38	17	-1	-1	38	17	-1	-1	-1	17	-1	17	-1	Clay-like	-1	-1	-1.00	-1	0.71	17	-1.00	-1		ot Susceptible	
	CL	23.5	79	99	45	25	-1	-1	-1	-1	45	25	-1	25	-1	25	-1	Clay-like	-1	-1	-1.00	-1	0.52	25	-1.00	-1		ot Susceptible	
	CL	20.2	89	99.9	39	19	-1	-1	39	19	-1	-1	-1	19	-1	19	-1	Clay-like	-1	-1	-1.00	-1	0.52	19	-1.00	-1	No	ot Susceptible	
	SM	20.0	100	29	NP	NP												Sand-like											
	CL-ML	20.6	100	84	28	7	28	7	-1	-1	-1	-1	-1	7	7	-1	-1	Sand-like											
	CL	23.1	71.7	74.1	43	22	-1	-1	-1	-1	43	22	-1	22	-1	22	-1	Clay-like	-1	-1	-1.00	-1	0.54	22	-1.00	-1	No	ot Susceptible	
	CL	19.0	71.4	77.3	31	13	-1	-1	31	13	-1	-1	-1	13	-1	13	-1	Clay-like	-1	-1	-1.00	-1	0.61	13	-1.00	-1	No	ot Susceptible	
	CL-ML	18.7	82.2	99.2	26	7	26	7	-1	-1	-1	-1	-1	7	7	-1	-1	Sand-like											
	ML	21.9	81.3	99.8	NP	NP												Sand-like											
	SM	14.8	36.1	95.7	NP	NP												Sand-like											
	ML	21.6	56.5	98.6	NP	NP												Sand-like											
	ML	25.7	90.2	98.9	NP	NP												Sand-like											
	CL	23.4	86.2	92.4	42	23	-1	-1	-1	-1	42	23	-1	23	-1	23	-1	Clay-like	-1	-1	-1.00	-1	0.56	23	-1.00	-1	No	ot Susceptible	
Τ																													

Sand-like versus Clay-like Behavior (-1 indicates result does not meet criteria, green shading indicates result does meet criteria, no results shown for non-plastic material)

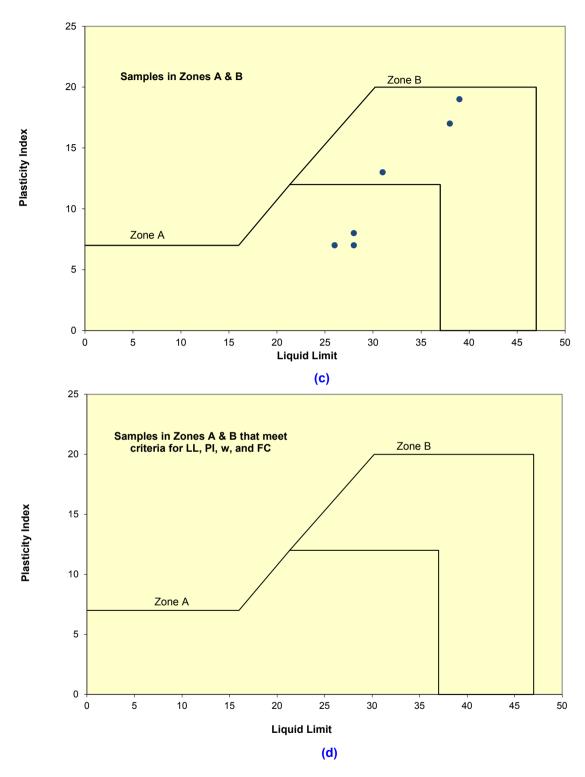
Susceptibility of Clay-like Solis to Cyclic Softening (-1 indicates result does not meet criteria, green shading indicates result does meet criteria, no results shown for Sand-like materials)

Using criteria published by MSHA (2010)

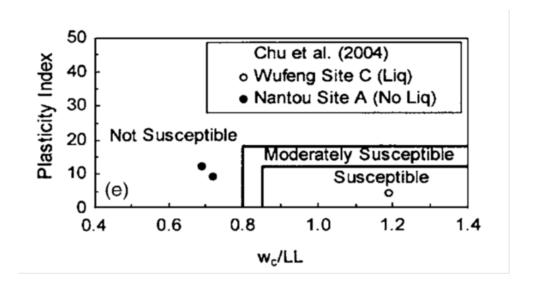

Using Criteria published by Seed et al (2003)

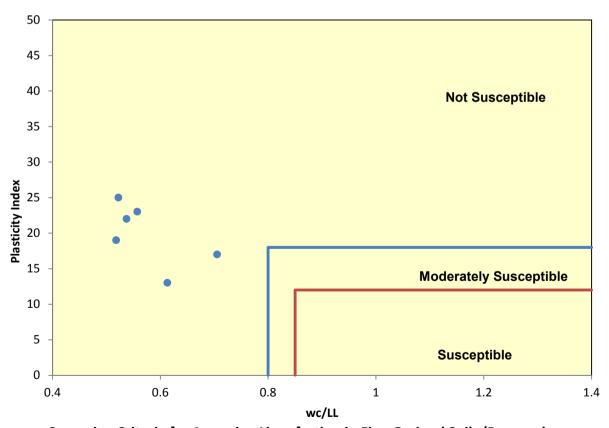

Using Criteria published by Bray and Sancio (2006)

Using Criteria published by Idriss and Boulanger (2008)


Using Criteria published by Seed et al (2003)

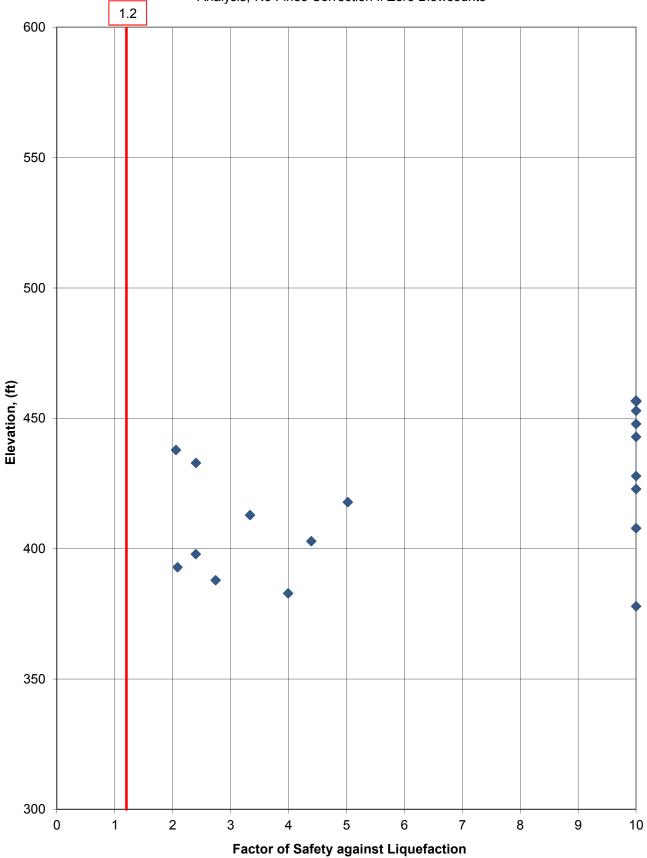
Fine_Grained_Liq_Screening_Landfill Runoff Dam.xlsx 9/24/2015 11:27 AM



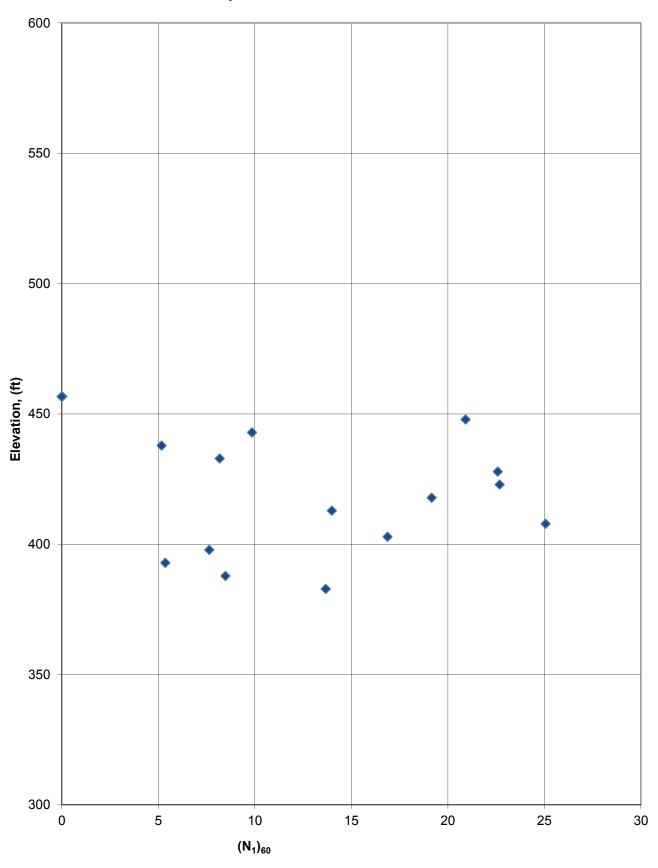


Screening Criteria for Liquefiable Fine-Grained Soils (Seed et al. 2003)

Screening Criteria for Liquefiable Fine-Grained Soils (Seed et al. 2003)

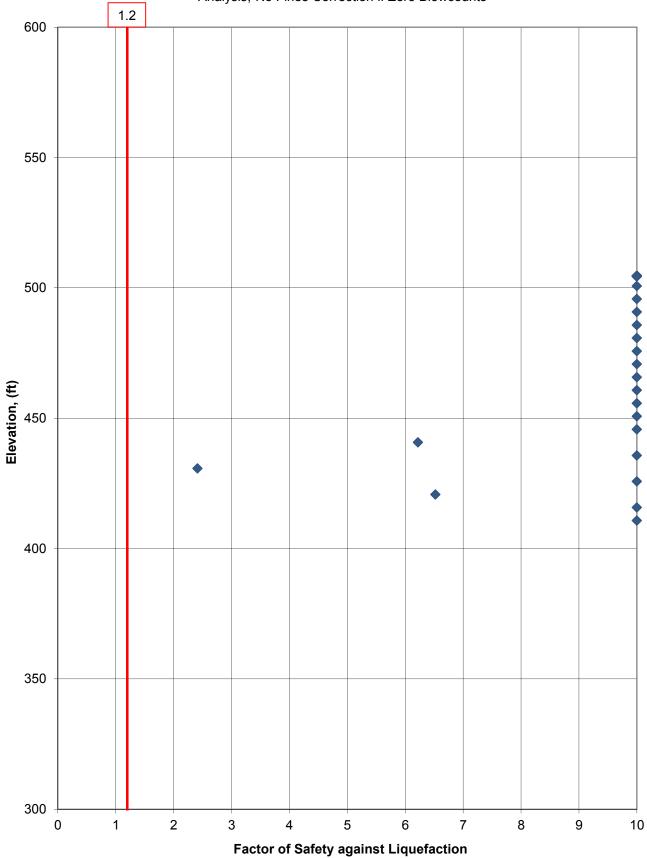


Screening Criteria for Assessing Liquefaction in Fine Grained Soils (Bray and Sancio 2006)

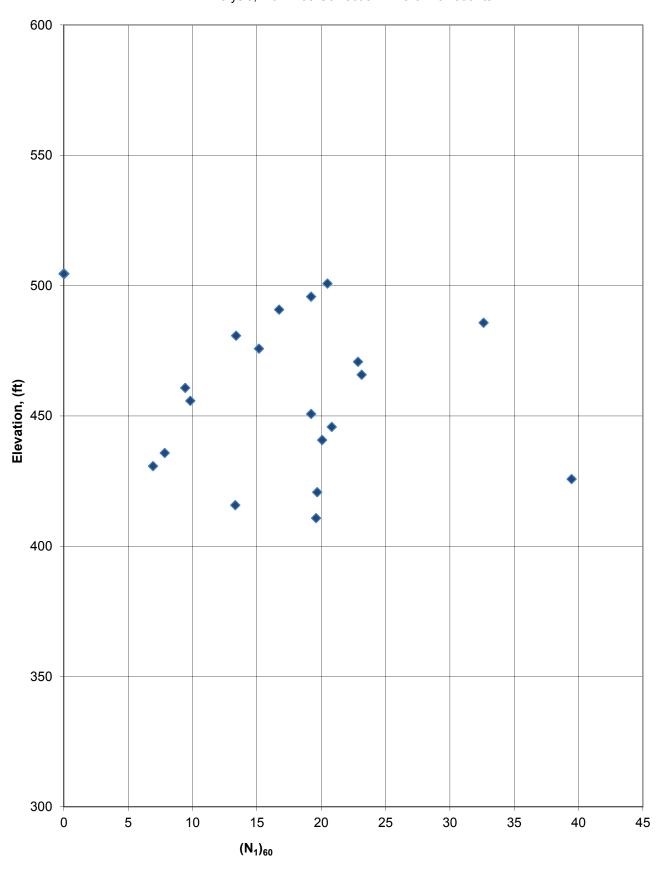

COARSE-GRAINED ANALYSIS	

Depth of Mid. Pt. of Sample (ft.)	Vert. Total Stress during EQ (tsf) σ_v	Vert. Total Stress during EQ w/ Fill (tsf) $\sigma_{v \text{with fill}}$	Static Pore Pressure during EQ (tsf) u	Stress	w/ Fill (tsf)	Alpha I	(Equivalen Clean San N-Value (N1)60cs		Ksigma	Kalpha	EQ Source 0 a max (g) 0.085 EQ Mag (Mw) 7.7 Mag. Scaling Factor (Cm)	CRR Design EQ	Simplified Stress Reduction Coeff., r _d	Simplified CSR eq Design EQ	Event (MCE, OBE, etc 0 EQ Motion File 0 Max. Shake Stress (psf) Design EQ	Avg. Shake Stress (psf) Design EQ	CSR eq	ng SHAKE E FS liq Design EQ	FS liq	Shake Stress m4: m3: m2: m1: FS liq Design EQ	Curve Fit Parameters
[totstr-top	1	Fill Total Fill u-top	Boring ID: Fill Elevation: Fill Height: Unit Weight: Total Stress: effstr-top								not appropriate soils classified evaluated using	ly evaluated us as CL, CH, CL- methods for fil soils with equiv	as "NA" implies that ting this methodology. ML and MH. These some-grained soils. Also, alent clean sand N-ve	This applies to oils should be , "NA" implies th							
3.8	0.19	0.23	0.00	0.19 0.23	0.23	5.00	1.20	46	NA	1.000	1.000	0.95	NA	0.993	0.055	0	0	0.000	NA	10.0	NA	10.0
8.8	0.55	0.55	0.00	0.55	0.55	5.00	1.20	30	NA	1.000	1.000	0.95	NA NA	0.982	0.054	0	0	0.000	NA	10.0	NA NA	10.0
13.8	0.86	0.86	0.00	0.86	0.86	5.00	1.20	17	NA	1.000	1.000	0.95	NA	0.971	0.054	ő	ő	0.000	NA	10.0	NA	10.00
18.8	1.17	1.17	0.15	1.02	1.02	5.00	1.20	11	0.124	1.000	1.000	0.95	0.117	0.960	0.061	Ō	ō	0.000	#DIV/0!	#DIV/0!	2.1	2.06
23.8	1.48	1.48	0.30	1.18	1.18	5.00	1.20	15	0.158	0.991	1.000	0.95	0.149	0.946	0.066	0	0	0.000	#DIV/0!	#DIV/0!	2.4	2.40
28.8	1.80	1.80	0.46	1.34	1.34	5.00	1.20	32	NA	0.966	1.000	0.95	NA	0.927	0.069	0	0	0.000	NA	10.0	NA	10.00
33.8	2.11	2.11	0.62	1.49	1.49	5.00	1.20	32	NA	0.950	1.000	0.95	NA	0.899	0.070	0	0	0.000	NA	10.0	NA	10.00
38.8	2.42	2.42	0.77	1.65	1.65	5.00	1.20	28	0.369	0.943	1.000	0.95	0.330	0.862	0.070	0	0	0.000	#DIV/0!	#DIV/0!	5.0	5.02
43.8	2.73	2.73	0.93	1.81	1.81	5.00	1.20	22	0.239	0.945	1.000	0.95	0.214	0.816	0.068	0	0	0.000	#DIV/0!	#DIV/0!	3.3	3.34
48.8	3.05	3.05	1.08	1.96	1.96	5.00	1.20	35	NA	0.899	1.000	0.95	NA	0.765	0.066	0	0	0.000	NA	10.0	NA	10.00
53.8	3.36	3.36	1.24	2.12	2.12	5.00	1.20	25	0.297	0.920	1.000	0.95	0.259	0.715	0.063	0	0	0.000	#DIV/0!	#DIV/0!	4.4	4.39
58.8	3.67	3.67	1.40	2.28	2.28	5.00	1.20	14	0.152	0.936	1.000	0.95	0.135	0.670	0.060	0	0	0.000	#DIV/0!	#DIV/0!	2.4	2.40
63.8	3.98	3.98	1.55	2.43	2.43	5.00	1.20	11	0.126	0.937	1.000	0.95	0.112	0.631	0.057	0	0	0.000	#DIV/0!	#DIV/0!	2.1	2.08
68.8	4.30	4.30	1.71	2.59	2.59	5.00	1.20	15	0.162	0.923	1.000	0.95	0.142	0.599	0.055	0	0	0.000	#DIV/0!	#DIV/0!	2.7	2.74
73.8	4.61	4.61	1.86	2.75	2.75	5.00	1.20	21	0.234	0.902	1.000	0.95	0.200	0.573	0.053	0	0	0.000	#DIV/0!	#DIV/0!	4.0	3.99
78.8	4.92	4.92	2.02	2.90	2.90	5.00	1.20	62	NA	0.697	1.000	0.95	NA	0.553	0.052	0	0	0.000	NA	10.0	NA	10.00

Clifty Creek AEP, Boring = SI-1, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

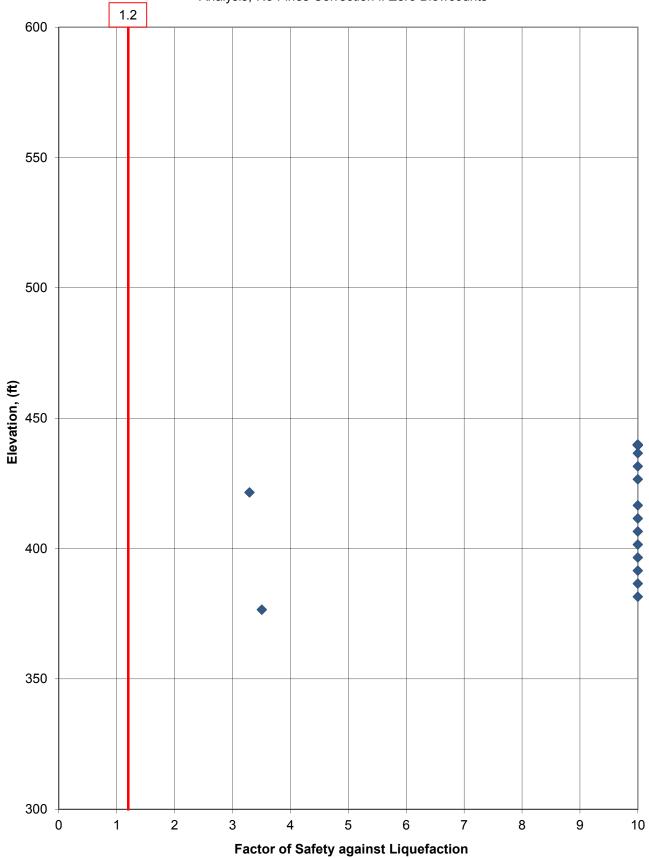


Clifty Creek AEP, Boring = SI-1, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

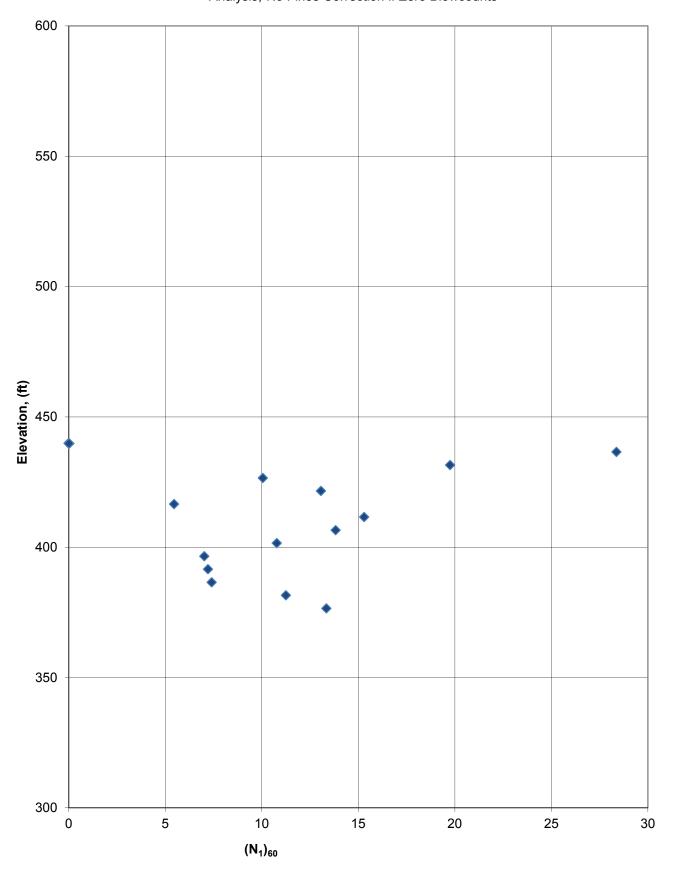


Depth of Mid. Pt. of Sample (ft.)	Vert. Total Stress during EQ (tsf) σ_v	Vert. Total Stress during EQ w/ Fill (tsf) G _{V with fill}	Static Pore Pressure during EQ (tsf)	Vert. Eff. Stress during EQ (tsf) σ'_{v}	Vert. Eff. Stress during EQ w/ Fill (tsf) o'v with fill	Effective All-Around Stress during EQ (psf) o'm	Shear Modulus during EQ (ksf) G _{max}	Alpha I	•	Equivalent Clean Sand N-Value (N1)60cs	CRR7.5	Ksigma	Kalpha	EQ Source 0 a max (g) 0.085 EQ Mag (Mw) 7.7 Mag. Scaling Factor (Cm)	CRR Design EQ	Simplified Stress Reduction Coeff., r _d	Simplified CSR eq Design EQ	EVENT (MCE, OBE, etc 0 EQ Motion File 0 Max. Shake Stress (psf) Design EQ	Avg. Shake Stress (psf) Design EQ	CSR eq	ng SHAKE Da FS liq Design EQ	FS liq	Shake Stress m4: m3: m2: m1: FS liq Design EQ	Curve Fit Parameters 0 0 0 0 Simplified FS liq for plot
		_	Fill Total I	Boring ID: ill Elevation: Fill Height: Jnit Weight: Total Stress:	504.5 0.0 125 0.00					「hole elev	.)			not appropriatel soils classified a evaluated using	y evaluated usi as CL, CH, CL-i methods for fir soils with equiv	as "NA" implies that th ing this methodology. T ML and MH. These so ne-grained soils. Also, ralent clean sand N-vai	This applies to ils should be "NA" implies that							
	totstr-top 0.19		u-top 0.00	effstr-top 0.19																				
3.8	0.23	0.23	0.00	0.23	0.23	312.50	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.993	0.055	0	0	0.000	NA	10.0	NA	10.00
8.8	0.55	0.55	0.00	0.55	0.55	729.17	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.982	0.054	0	0	0.000	NA	10.0	NA	10.00
13.8	0.86	0.86	0.12	0.74	0.74	989.83	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.971	0.062	0	0	0.000	NA	10.0	NA	10.00
18.8	1.17	1.17	0.27	0.90	0.90	1198.50	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.960	0.069	0	0	0.000	NA	10.0	NA	10.00
23.8	1.48	1.48	0.43	1.06	1.06	1407.17	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.946	0.074	0	0	0.000	NA	10.0	NA	10.00
28.8	1.80	1.80	0.59	1.21	1.21	1615.83	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.927	0.076	0	0	0.000	NA	10.0	NA	10.00
33.8	2.11	2.11	0.74	1.37	1.37	1824.50	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.899	0.077	0	0	0.000	NA	10.0	NA	10.00
38.8	2.42	2.42	0.90	1.52	1.52	2033.17	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.862	0.076	0	0	0.000	NA	10.0	NA	10.00
43.8	2.73	2.73	1.05	1.68	1.68	2241.83	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.816	0.073	0	0	0.000	NA	10.0	NA	10.00
48.8	3.05	3.05	1.21	1.84	1.84	2450.50	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.765	0.070	0	0	0.000	NA	10.0	NA	10.00
53.8	3.36	3.36	1.37	1.99	1.99	2659.17	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.715	0.067	0	0	0.000	NA	10.0	NA	10.00
58.8	3.67	3.67	1.52	2.15	2.15	2867.83	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.670	0.063	0	0	0.000	NA	10.0	NA	10.00
63.8	3.98	3.98	1.68	2.31	2.31	3076.50	#NUM!	5.00	1.20	29	0.414	0.896	1.000	0.95	0.352	0.631	0.060	0	0	0.000	#DIV/0!	#DIV/0!	6.2	6.22
68.8	4.30	4.30	1.83	2.46	2.46	3285.17	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.599	0.058	0	0	0.000	NA	10.0	NA	10.00
73.8	4.61	4.61	1.99	2.62	2.62	3493.83	#NUM!	5.00	1.20	13	0.144	0.928	1.000	0.95	0.126	0.573	0.056	0	0	0.000	#DIV/0!	#DIV/0!	2.4	2.41
78.8	4.92	4.92	2.15	2.78	2.78	3702.50	#NUM!	5.00	1.20	52	NA	0.711	1.000	0.95	NA	0.553	0.054	0	0	0.000	NA	10.0	NA	10.00
83.8	5.23	5.23	2.30	2.93	2.93	3911.17	#NUM!	5.00	1.20	29	0.393	0.869	1.000	0.95	0.324	0.536	0.053	0	0	0.000	#DIV/0!	#DIV/0!	6.5	6.52
88.8	5.55	5.55	2.46	3.09	3.09	4119.83	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.522	0.052	0	0	0.000	NA	10.0	NA	10.00
93.8	5.86	5.86	2.61	3.25	3.25	4328.50	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.511	0.051	0	0	0.000	NA	10.0	NA	10.00

Clifty Creek AEP, Boring = SS2-1, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

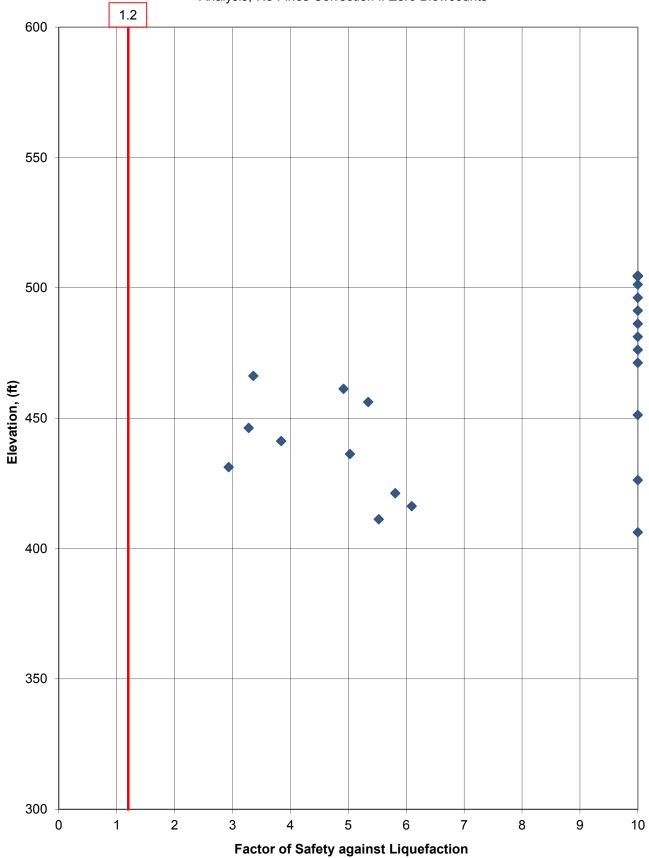


Clifty Creek AEP, Boring = SS2-1, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

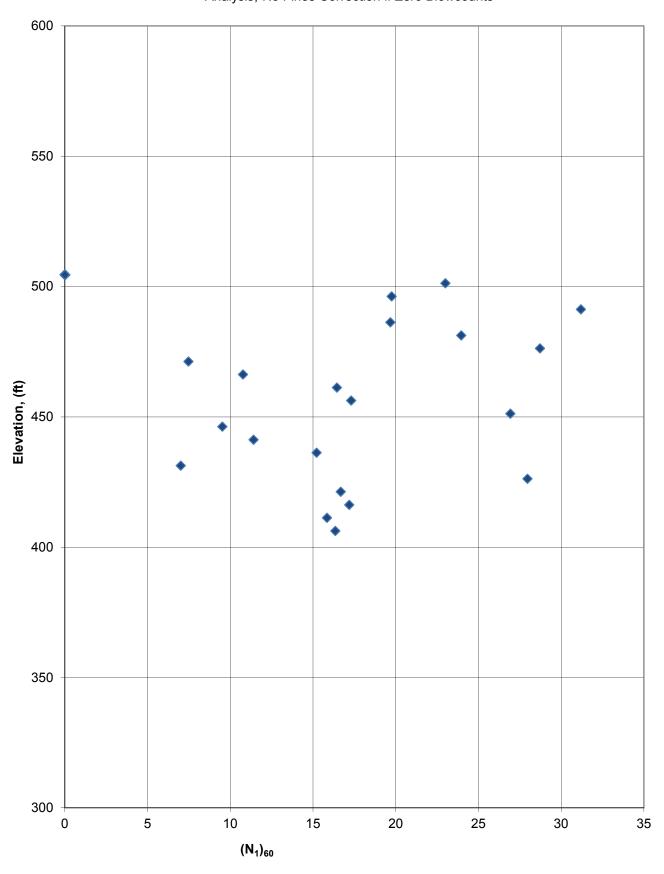


Depth of Mid. Pt. of Sample (ft.)	Vert. Total Stress during EQ (tsf)	Vert. Total Stress during EQ w/ Fill (tsf) $\sigma_{v \ with \ fill}$	Static Pore Pressure during EQ (tsf)	Vert. Eff. Stress during EQ (tsf) o' _v	Vert. Eff. Stress during EQ w/ Fill (tsf) o'v with fill	Alpha I	(Equivalent Clean Sand N-Value (N1)60cs		Ksigma	Kalpha	EQ Source 0 a max (g) 0.085 EQ Mag (Mw) 7.7 Mag. Scaling Factor (Cm)	CRR Design EQ	Simplified Stress Reduction Coeff., r _d	Simplified CSR eq Design EQ	Event (MCE, OBE, et 0 EQ Motion File 0 Max. Shake Stress (psf) Design EQ	Avg. Shake Stress (psf) Design EQ	CSR eq	ing SHAKE D FS liq Design EQ	FS liq	Shake Stress m4: m3: m2: m1: FS liq Design EQ	Curve Fit Parameters 0 0 0 0 Simplified FS liq for plot
			Top of F	Boring ID: Fill Elevation: Fill Height:	\$\$2-4 439.8	3						not appropriate	ely evaluated usi	as "NA" implies that to ing this methodology. ML and MH. These so	This applies to							
				Unit Weight: Total Stress:	125							evaluated using	g methods for fin soils with equiv	ne-grained soils. Also, alent clean sand N-va	"NA" implies tha							
	totstr-top		u-top	effstr-top																		
2.0	0.16	0.00	0.00	0.16 0.20	0.00	NA	NA	NIA	NA	NIA	NIA	0.05	NA	0.994	0.055	0		0.000	NIA	40.0	NIA	10.00
3.3 8.3	0.20 0.52	0.20 0.52	0.00	0.20	0.20 0.52	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.95 0.95	NA NA	0.994	0.054	0	0	0.000	NA NA	10.0 10.0	NA NA	10.00
13.3	0.83	0.83	0.10	0.73	0.73	NA	NA	NA	NA	NA	NA	0.95	NA NA	0.972	0.061	0	0	0.000	NA	10.0	NA NA	10.00
18.3	1.14	1.14	0.26	0.88	0.88	5.00	1.20	21	0.224	1.000	1.000	0.95	0.212	0.961	0.069	0	Ō	0.000	#DIV/0!	#DIV/0!	3.3	3.29
23.3	1.45	1.45	0.41	1.04	1.04	NA	NA	NA	NA	NA	NA	0.95	NA	0.948	0.073	0	0	0.000	NA	10.0	NA	10.00
28.3	1.77	1.77	0.57	1.20	1.20	NA	NA	NA	NA	NA	NA	0.95	NA	0.929	0.076	0	0	0.000	NA	10.0	NA	10.00
33.3	2.08	2.08	0.73	1.35	1.35	NA	NA	NA	NA	NA	NA	0.95	NA	0.902	0.077	0	0	0.000	NA	10.0	NA	10.00
38.3	2.39	2.39	0.88	1.51	1.51	NA	NA	NA	NA	NA	NA	0.95	NA	0.866	0.076	0	0	0.000	NA	10.0	NA	10.00
43.3	2.70	2.70	1.04	1.67	1.67	NA	NA	NA	NA	NA	NA	0.95	NA	0.821	0.074	0	0	0.000	NA	10.0	NA	10.00
48.3	3.02	3.02	1.19	1.82	1.82	NA	NA	NA	NA	NA	NA	0.95	NA	0.771	0.070	0	0	0.000	NA	10.0	NA NA	10.00
53.3 58.3	3.33 3.64	3.33 3.64	1.35 1.51	1.98 2.14	1.98 2.14	NA NA	NA NA	NA	NA NA	NA NA	NA NA	0.95 0.95	NA NA	0.720 0.674	0.067 0.063	0	0	0.000	NA NA	10.0 10.0	NA NA	10.00 10.00
63.3	3.95	3.95	1.66	2.14	2.14	5.00	1.20	NA 21	0.228	0.920	1.000	0.95	0.199	0.634	0.060	0	0	0.000	#DIV/0!	#DIV/0!	3.5	3.50

Clifty Creek AEP, Boring = SS2-4, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

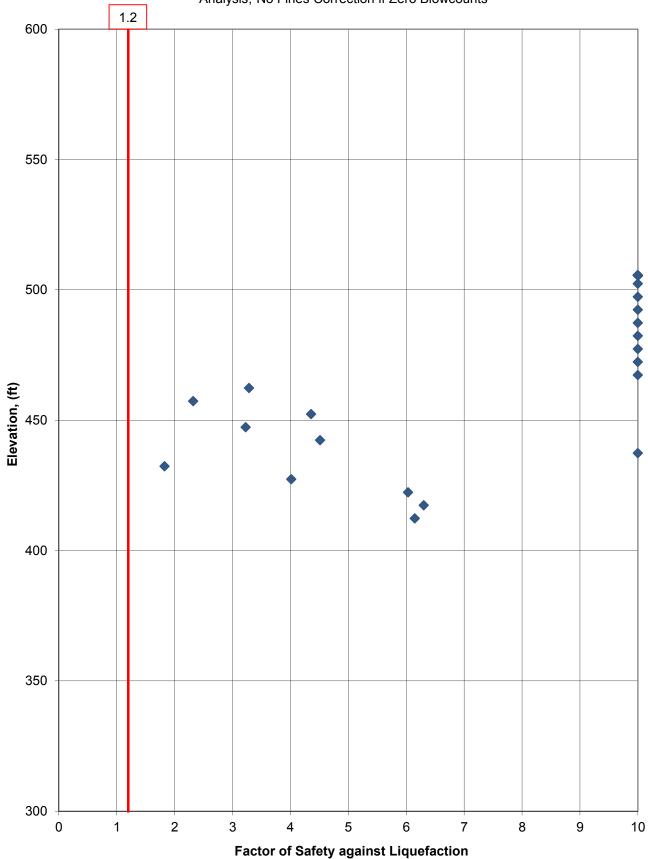


Clifty Creek AEP, Boring = SS2-4, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

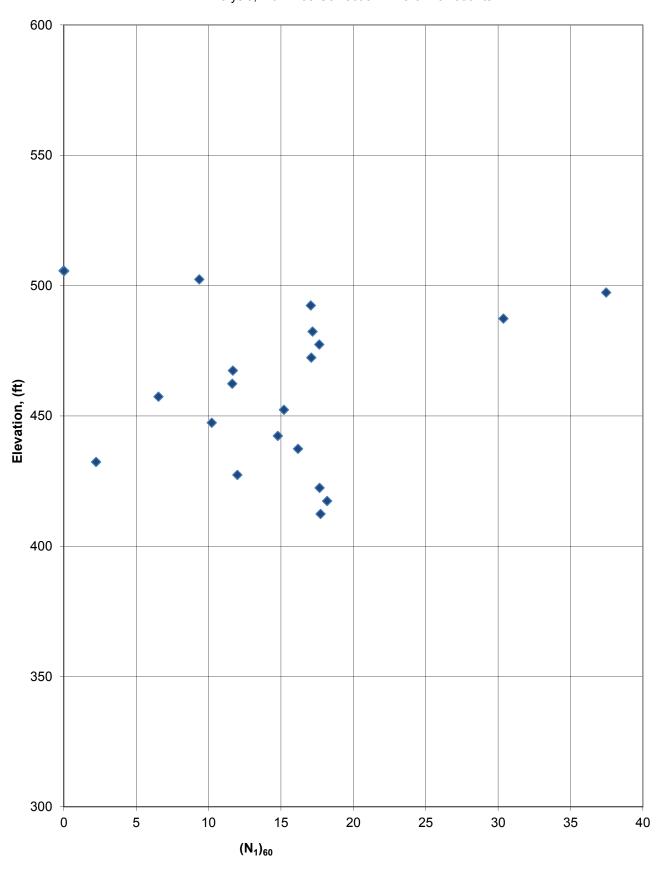


Depth of Mid. Pt. of Sample (ft.)	Vert. Total Stress during EQ (tsf) σ_v	Vert. Total Stress during EQ w/ Fill (tsf) $\sigma_{v \text{with fill}}$	Static Pore Pressure during EQ (tsf)	Vert. Eff. Stress during EQ (tsf) o' _v	Vert. Eff. Stress during EQ w/ Fill (tsf) o' _{v with fill}	Effective All-Around Stress during EQ (psf) o'm	Shear Modulus during EQ (ksf) G _{max}	Alpha I	C	Equivalent llean Sand N-Value (N1)60cs	I CRR7.5	Ksigma	Kalpha	EQ Source 0 a max (g) 0.085 EQ Mag (Mw) 7.7 Mag. Scaling Factor (Cm)	CRR Design EQ	Simplified Stress Reduction Coeff., r _d	Simplified CSR eq Design EQ	EVENT (MCE, OBE, etc 0 EQ Motion File 0 Max. Shake Stress (psf) Design EQ	Avg. Shake Stress (psf)	CSR eq	ng SHAKE Da FS liq Design EQ		Shake Stress m4: m3: m2: m1: FS liq Design EQ	S Curve Fit Parameters 0 0 0 0 Simplified FS liq for plot
ŕ		ı t	Fill Total I	Boring ID: ill Elevation: Fill Height: Jnit Weight: Total Stress:	0.0 125 0.00					hole elev.)			not appropriatel soils classified a evaluated using	ly evaluated using as CL, CH, CL-I methods for firm soils with equive	as "NA" implies that th ing this methodology. ' ML and MH. These so ne-grained soils. Also, alent clean sand N-va	This applies to ils should be "NA" implies that							
	totstr-top 0.16		u-top 0.00	effstr-top 0.16																				
3.3	0.20	0.20	0.00	0.20	0.20	270.83	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.994	0.055	0	0	0.000	NA	10.0	NA	10.00
8.3	0.52	0.52	0.00	0.52	0.52	687.50	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.983	0.054	0	0	0.000	NA	10.0	NA	10.00
13.3	0.83	0.83	0.00	0.83	0.83	1104.17	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.972	0.054	0	0	0.000	NA	10.0	NA	10.00
18.3	1.14	1.14	0.00	1.14	1.14	1520.83	#NUM!	5.00	1.20	29	NA	0.990	1.000	0.95	NA	0.961	0.053	0	0	0.000	NA	10.0	NA	10.00
23.3	1.45	1.45	0.00	1.45	1.45	1937.50	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.948	0.052	0	0	0.000	NA	10.0	NA	10.00
28.3	1.77	1.77	0.00	1.77	1.77	2354.17	#NUM!	5.00	1.20	39	NA	0.909	1.000	0.95	NA	0.929	0.051	0	0	0.000	NA	10.0	NA	10.00
33.3	2.08	2.08	0.10	1.98	1.98	2635.63	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.902	0.052	0	0	0.000	NA	10.0	NA	10.00
38.3	2.39	2.39	0.26	2.13	2.13	2844.30	#NUM!	5.00	1.20	18	0.191	0.935	1.000	0.95	0.169	0.866	0.054	0	0	0.000	#DIV/0!	#DIV/0!	3.4	3.36
43.3	2.70	2.70	0.41	2.29	2.29	3052.97	#NUM!	5.00	1.20	25	0.287	0.911	1.000	0.95	0.248	0.821	0.054	0	0	0.000	#DIV/0!	#DIV/0!	4.9	4.92
48.3	3.02	3.02	0.57	2.45	2.45	3261.63	#NUM!	5.00	1.20	26	0.308	0.904	1.000	0.95	0.264	0.771	0.052	0	0	0.000	#DIV/0!	#DIV/0!	5.3	5.34
53.3	3.33	3.33	0.73	2.60	2.60	3470.30	#NUM!	5.00	1.20	37	NA	0.847	1.000	0.95	NA	0.720	0.051	0	0	0.000	NA	10.0	NA	10.00
58.3	3.64	3.64	0.88	2.76	2.76	3678.97	#NUM!	5.00	1.20	16	0.175	0.915	1.000	0.95	0.152	0.674	0.049	0	0	0.000	#DIV/0!	#DIV/0!	3.3	3.28
63.3	3.95	3.95	1.04	2.92	2.92	3887.63	#NUM!	5.00	1.20	19	0.200	0.906	1.000	0.95	0.172	0.634	0.048	0	0	0.000	#DIV/0!	#DIV/0!	3.8	3.84
68.3	4.27	4.27	1.19	3.07	3.07	4096.30	#NUM!	5.00	1.20	23	0.261	0.882	1.000	0.95	0.218	0.602	0.046	0	0	0.000	#DIV/0!	#DIV/0!	5.0	5.03
73.3	4.58	4.58	1.35	3.23	3.23	4304.97	#NUM!	5.00	1.20	13	0.144	0.908	1.000	0.95	0.124	0.576	0.045	0	0	0.000	#DIV/0!	#DIV/0!	2.9	2.93
78.3 83.3	4.89	4.89	1.51 1.66	3.39 3.54	3.39 3.54	4513.63 4722.30	#NUM! #NUM!	5.00 5.00	1.20 1.20	39 25	NA 0.292	0.794 0.861	1.000	0.95 0.95	NA 0.239	0.555 0.538	0.044 0.044	0	0	0.000	NA #DIV/0!	10.0 #DIV/0!	NA 5.8	10.00 5.81
83.3 88.3	5.20 5.52	5.20 5.52	1.82	3.54	3.54	4930.97	#NUM!	5.00	1.20	25 26	0.292	0.856	1.000	0.95	0.239	0.538	0.044	0	0	0.000	#DIV/0!	#DIV/0!	6.1	6.09
93.3	5.52	5.52	1.82	3.70	3.70	5139.63	#NUM!	5.00	1.20	26	0.305	0.856	1.000	0.95	0.247	0.524	0.043	0	0	0.000	#DIV/0!	#DIV/0!	5.5	5.53
98.3	6.14	6.14	2.13	4.01	4.01	5348.30	#NUM!	NA	NA	NA	0.274 NA	NA	NA	0.95	0.222 NA	0.512	0.043	0	0	0.000	MA NA	10.0	NA	10.00
30.3	0.14	0.14	2.13	7.01	7.01	55-6.50	#14OIVI:	14/4	14/5	13/3	14/1	14/5	14/4	0.50	14/4	0.302	0.042	U	U	0.000	14/1	10.0	14/4	10.00

Clifty Creek AEP, Boring = SS3-1, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts



Clifty Creek AEP, Boring = SS3-1, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts



Depth of Mid. Pt. of Sample (ft.)	Vert. Total Stress during EQ (tsf) σ_v	Vert. Total Stress during EQ w/ Fill (tsf) G _{V with fill}	Static Pore Pressure during EQ (tsf)	Vert. Eff. Stress during EQ (tsf) o' _v	Vert. Eff. Stress during EQ w/ Fill (tsf) of'v with fill	Effective All-Around Stress during EQ (psf) σ'_m	Shear Modulus during EQ (ksf) G _{max}	Alpha I		Equivalent Clean Sand N-Value (N1)60cs	i CRR7.5	Ksigma	Kalpha	EQ Source 0 a max (g) 0.085 EQ Mag (Mw) 7.7 Mag. Scaling Factor (Cm)	CRR Design EQ	Simplified Stress Reduction Coeff., r _d	Simplified CSR eq Design EQ	Event (MCE, OBE, etc. 0 EQ Motion File 0 Max. Shake Stress (psf) Design EQ	Avg. Shake Stress (psf)	CSR eq	ng SHAKE D FS liq Design EQ	ata FS liq for plot	Shake Stress m4: m3: m2: m1: FS liq Design EQ	s Curve Fit Parameters 0 0 0 0 Simplified FS liq for plot
-		Boring ID: Top of III Elevation: 505.6 tt (if no fill, then set this equal to top of SPT hole elev.) Fill Height: Fill Total Unit Weight: Fill Total Stress: 0.00 tsf Note: A factor of safety shown as "NA" implies that the soil type is not appropriately evaluated using this methodology. This applies to soils classified as CL, CH, CL-ML and MH. These soils should be evaluated using methods for fine-grained soils. Also, "NA" implies that coarse grained soils. Also, "NA" implies that or evaluated using methods for fine-grained soils. Also, "NA" implies that are resistant to liquefaction.																						
	totstr-top 0.16		u-top 0.00	effstr-top 0.16																				
3.3	0.20	0.20	0.00	0.20	0.20	270.83	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.994	0.055	0	0	0.000	NA	10.0	NA	10.00
8.3	0.52	0.52	0.00	0.52	0.52	687.50	#NUM!	5.00	1.20	50	NA	1.000	1.000	0.95	NA	0.983	0.054	0	0	0.000	NA	10.0	NA	10.00
13.3	0.83	0.83	0.00	0.83	0.83	1104.17	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.972	0.054	0	0	0.000	NA	10.0	NA	10.00
18.3	1.14	1.14	0.00	1.14	1.14	1520.83	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.961	0.053	0	0	0.000	NA	10.0	NA	10.00
23.3	1.45	1.45	0.00	1.45	1.45	1937.50	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.948	0.052	0	0	0.000	NA	10.0	NA	10.00
28.3	1.77	1.77	0.13	1.63	1.63	2177.37	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.929	0.055	0	0	0.000	NA	10.0	NA	10.00
33.3	2.08	2.08	0.29	1.79	1.79	2386.03	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.902	0.058	0	0	0.000	NA	10.0	NA	10.00
38.3	2.39	2.39	0.44	1.95	1.95	2594.70	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.866	0.059	0	0	0.000	NA	10.0	NA	10.00
43.3	2.70	2.70	0.60	2.10	2.10	2803.37	#NUM!	5.00	1.20	19	0.203	0.937	1.000	0.95	0.180	0.821	0.058	0	0	0.000	#DIV/0!	#DIV/0!	3.3	3.28
48.3	3.02	3.02	0.76	2.26	2.26	3012.03	#NUM!	5.00	1.20	13	0.139	0.940	1.000	0.95	0.124	0.771	0.057	0	0	0.000	#DIV/0!	#DIV/0!	2.3	2.32
53.3	3.33	3.33	0.91	2.42	2.42	3220.70	#NUM!	5.00	1.20	23	0.261	0.908	1.000	0.95	0.225	0.720	0.055	0	0	0.000	#DIV/0!	#DIV/0!	4.4	4.36
58.3	3.64	3.64	1.07	2.57	2.57	3429.37	#NUM!	5.00	1.20	17	0.184	0.918	1.000	0.95	0.160	0.674	0.053	0	0	0.000	#DIV/0!	#DIV/0!	3.2	3.22
63.3	3.95	3.95	1.22	2.73	2.73	3638.03	#NUM!	5.00	1.20	23	0.253	0.899	1.000	0.95	0.216	0.634	0.051	0	0	0.000	#DIV/0!	#DIV/0!	4.5	4.51
68.3	4.27	4.27	1.38	2.89	2.89	3846.70	#NUM!	NA	NA	NA	NA	NA	NA	0.95	NA	0.602	0.049	0	0	0.000	NA	10.0	NA	10.00
73.3	4.58	4.58	1.54	3.04	3.04	4055.37	#NUM!	5.00	1.20	8	0.093	0.931	1.000	0.95	0.082	0.576	0.048	0	0	0.000	#DIV/0!	#DIV/0!	1.8	1.83
78.3	4.89	4.89	1.69	3.20	3.20	4264.03	#NUM!	5.00	1.20	19	0.208	0.898	1.000	0.95	0.177	0.555	0.047	0	0	0.000	#DIV/0!	#DIV/0!	4.0	4.01
83.3	5.20	5.20	1.85	3.35	3.35	4472.70	#NUM!	5.00	1.20	26	0.318	0.867	1.000	0.95	0.261	0.538	0.046	0	0	0.000	#DIV/0!	#DIV/0!	6.0	6.03
88.3	5.52	5.52	2.00	3.51	3.51	4681.37	#NUM!	5.00	1.20	27	0.334	0.852	1.000	0.95	0.270	0.524	0.045	0	0	0.000	#DIV/0!	#DIV/0!	6.3	6.30
93.3	5.83	5.83	2.16	3.67	3.67	4890.03	#NUM!	5.00	1.20	26	0.320	0.857	1.000	0.95	0.260	0.512	0.045	0	0	0.000	#DIV/0!	#DIV/0!	6.1	6.15

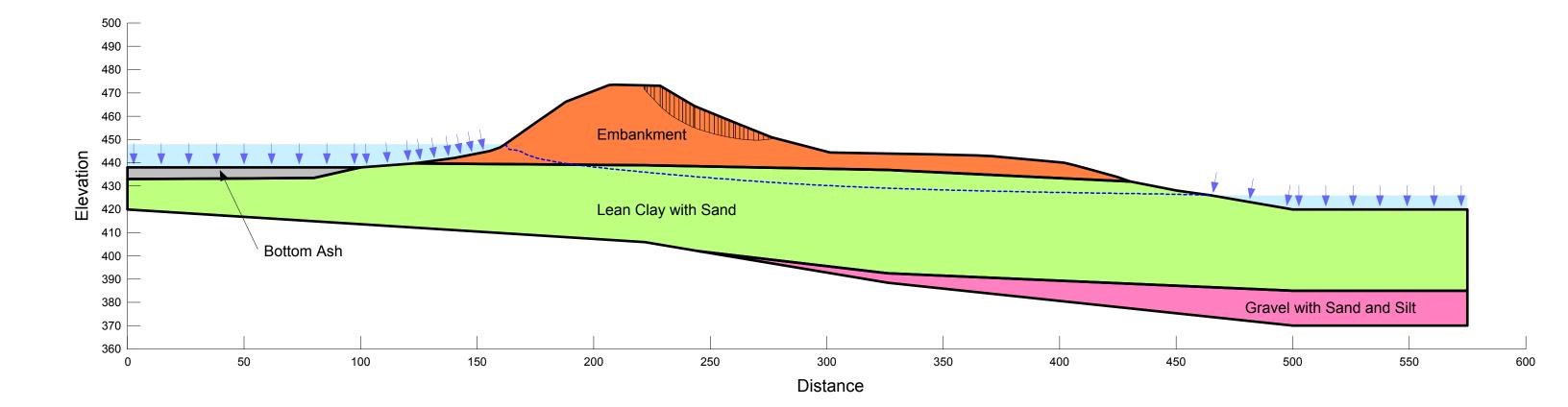
Clifty Creek AEP, Boring = SS4-1, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

Clifty Creek AEP, Boring = SS4-1, Source = 0, Mw = 7.7, Event = 0, SPT Data, NCEER Method (updated per Idriss and Boulanger (2008)) with Ground Response Analysis, No Fines Correction if Zero Blowcounts

APPENDIX I

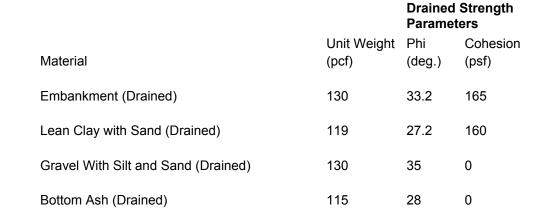
STABILITY ANALYSIS

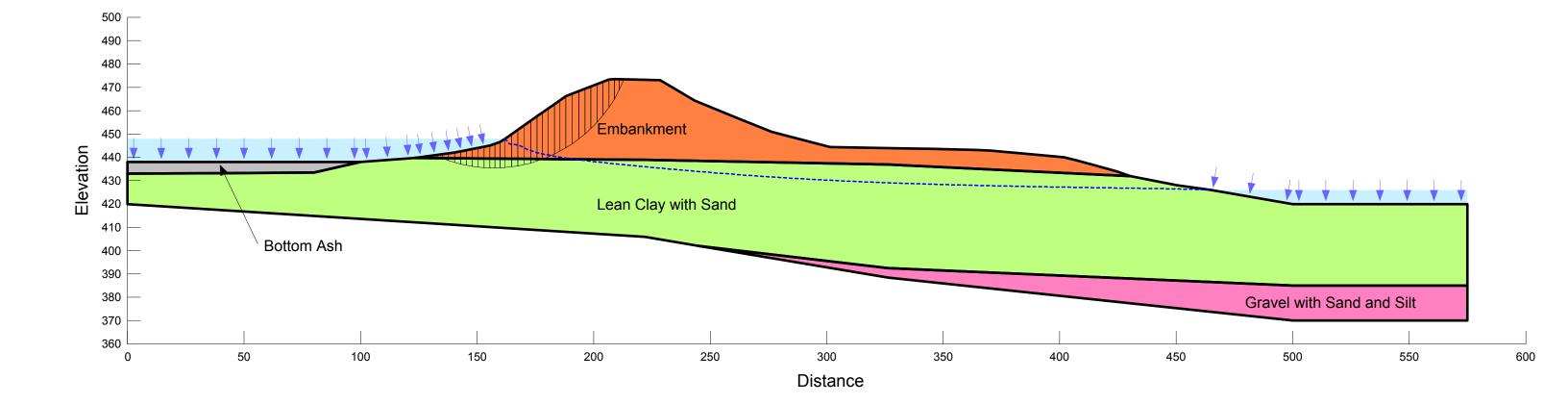
BOILER SLAG POND DAM: 2015 CCR MANDATE


L01_Normal Pool, Downstream Slope Failure Normal Pool Elevation: 448 Feet Drained Static Strengths Incipient Motion in the Downstream Direction Section A-A'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

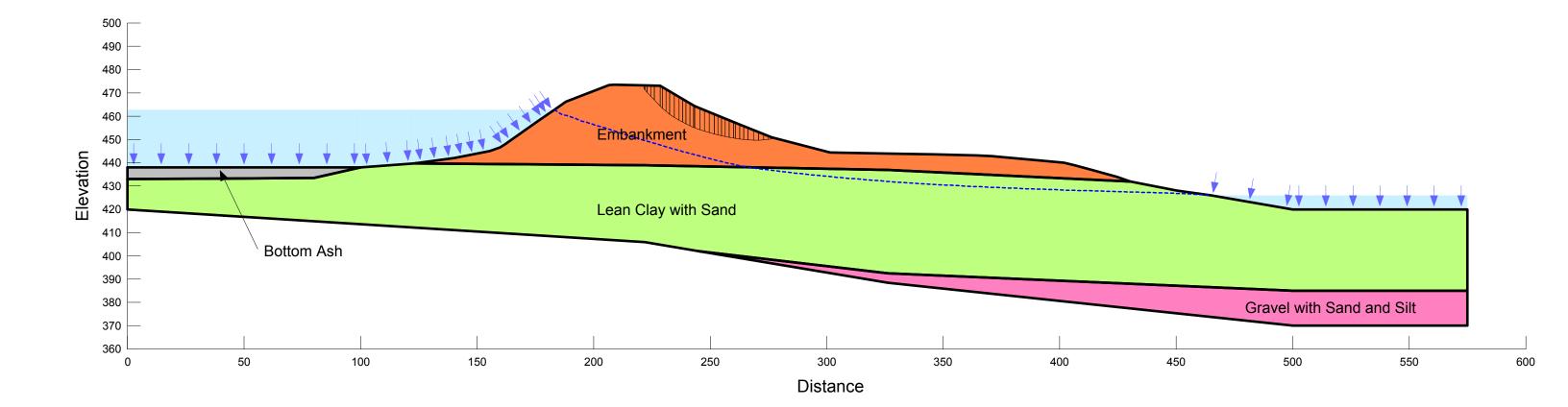
No warranties can be made regarding the continuity of subsurface conditions.


		Parameters	
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)
Embankment (Drained)	130	33.2	165
Lean Clay with Sand (Drained)	119	27.2	160
Gravel With Silt and Sand (Drained)	130	35	0
Bottom Ash (Drained)	115	28	0


Drained Strength

L02_Normal Pool, Upstream Slope Failure Normal Pool Elevation: 448 Feet **Drained Static Strengths** Incipient Motion in the Upstream Direction Section A-A'

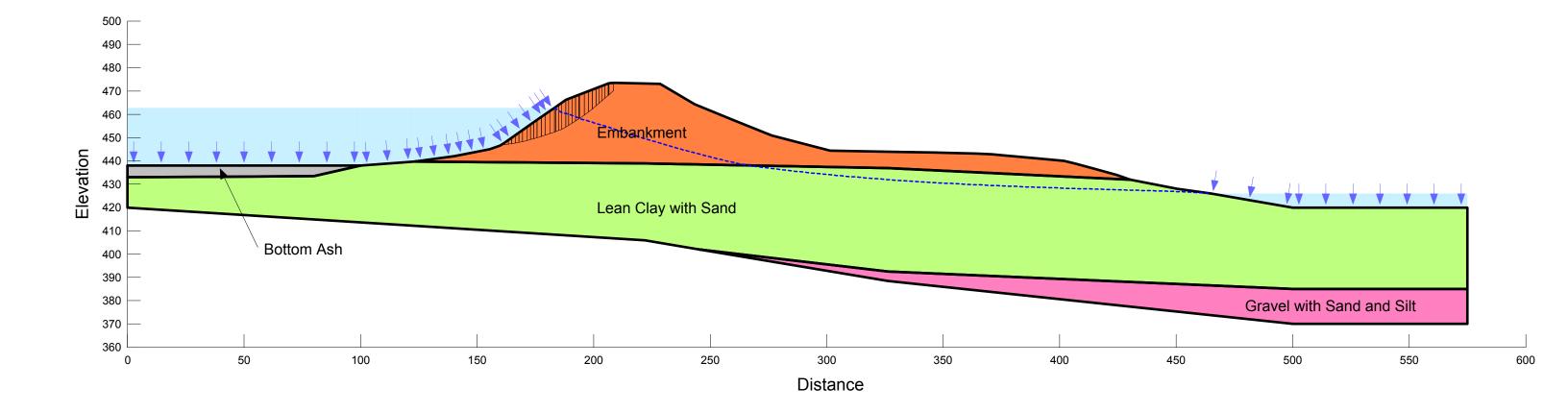
Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.


L03_50% PMF Pool, Downstream Slope Failure 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Incipient Motion in the Downstream Direction Section A-A'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

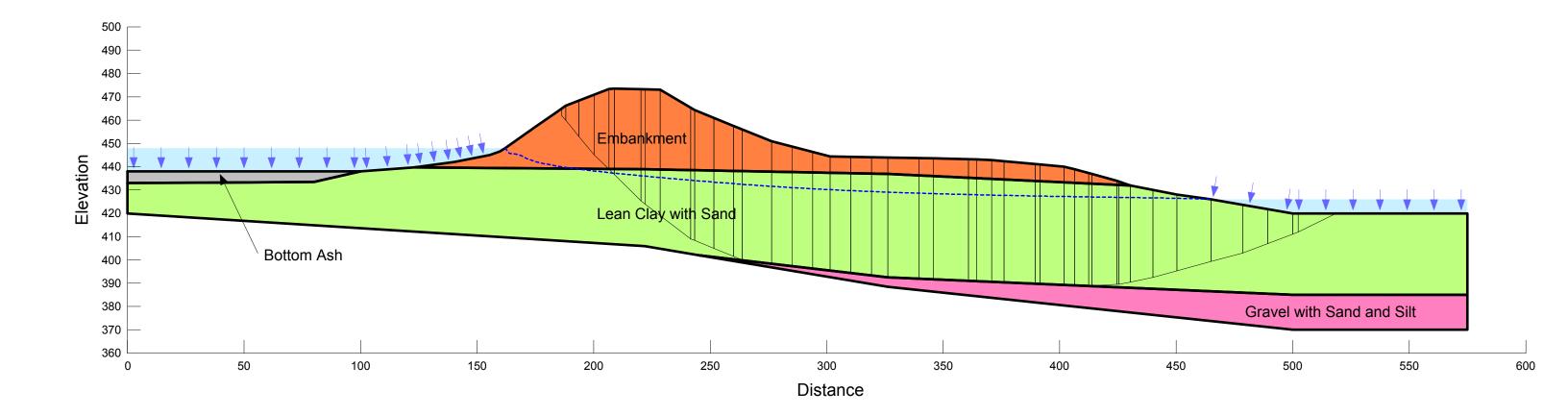
		Parameters		
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	
Embankment (Drained)	130	33.2	165	
Lean Clay with Sand (Drained)	119	27.2	160	
Gravel With Silt and Sand (Drained)	130	35	0	
Bottom Ash (Drained)	115	28	0	


Drained Strength

L04_50% PMF Pool, Upstream Slope Failure 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Incipient Motion in the Upstream Direction Section A-A'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

		Drained Strength Parameters	
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)
Embankment (Drained)	130	33.2	165
Lean Clay with Sand (Drained)	119	27.2	160
Gravel With Silt and Sand (Drained)	130	35	0
Bottom Ash (Drained)	115	28	0

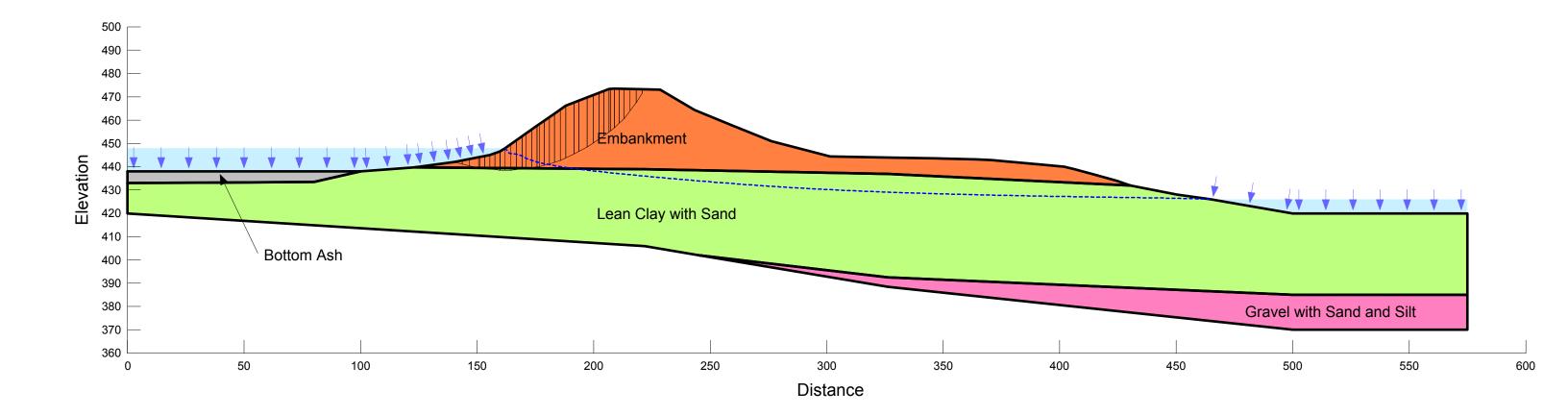

L05_Seismic_Normal Pool, Downstream Slope Failure Normal Pool Elevation: 448 Feet Undrained Static Strengths Incipient Motion in the Downstream Direction Horizontal Acc: 0.085g

Section A-A'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

		Drained Paramet	Strength ers	Undrain Parame	ed Strength ters
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	Phi (deg.)	Cohesion (psf)
Embankment (Seismic Undrained)	130	33.2	165	13	600
Lean Clay with Sand (Seismic Undrained)	119	27.2	160	5	1200
Gravel With Silt and Sand (Seismic Undrained)	130	35	0	35	0
Bottom Ash (Seismic Undrained)	115	28	0	28	0

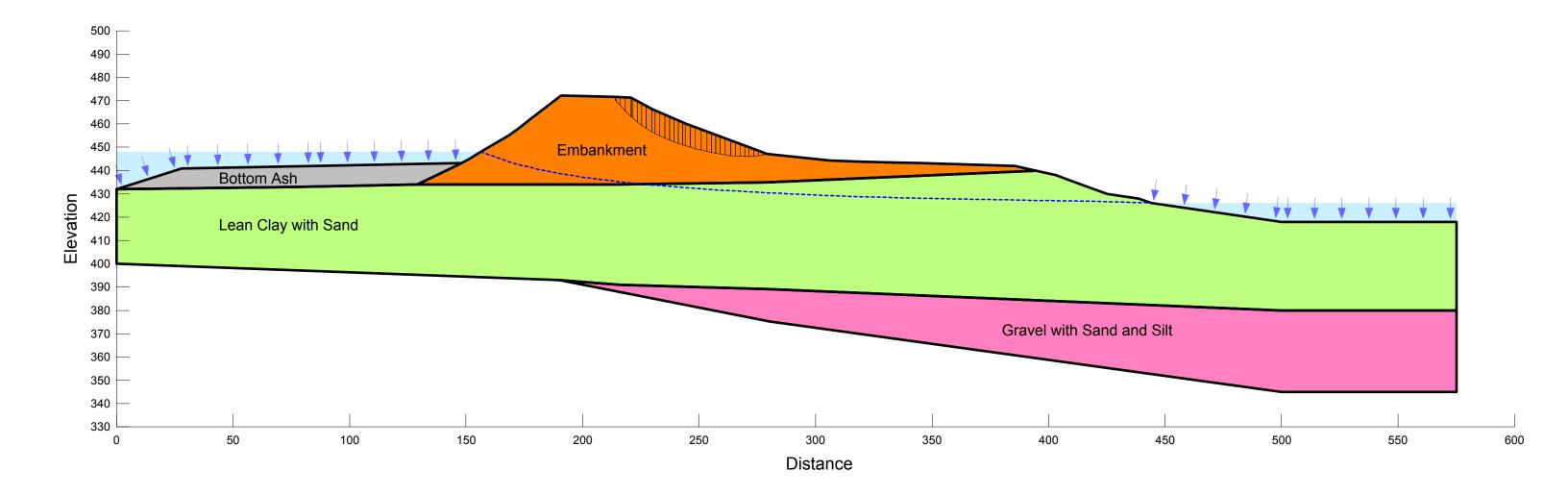


L06_Seismic_Normal Pool, Upstream Slope Failure Normal Pool Elevation: 448 Feet Undrained Static Strengths Incipient Motion in the Upstream Direction Horizontal Acc: 0.085g

Section A-A'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

		Drained Paramet	Strength ers	Undrain Parame	ed Strength ters
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	Phi (deg.)	Cohesion (psf)
Embankment (Seismic Undrained)	130	33.2	165	13	600
Lean Clay with Sand (Seismic Undrained)	119	27.2	160	5	1200
Gravel With Silt and Sand (Seismic Undrained)	130	35	0	35	0
Bottom Ash (Seismic Undrained)	115	28	0	28	0

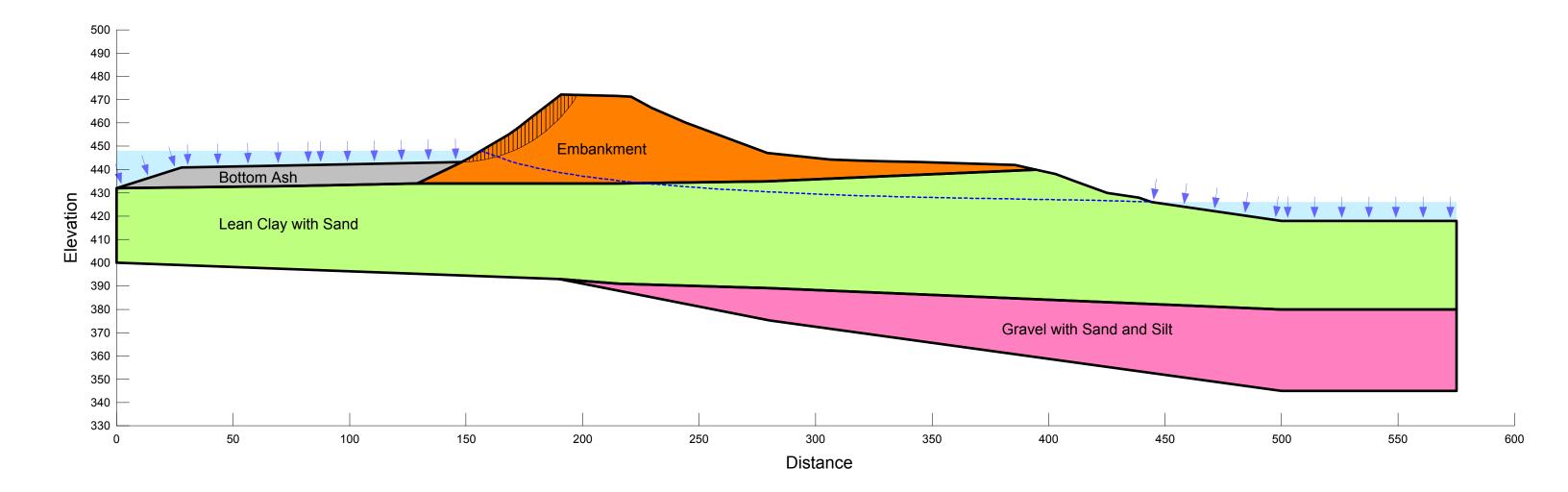


L01_Normal Pool, Downstream Slope Failure Normal Pool Elevation: 448 Feet Drained Static Strengths Incipient Motion in the Downstream Direction Section B-B'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

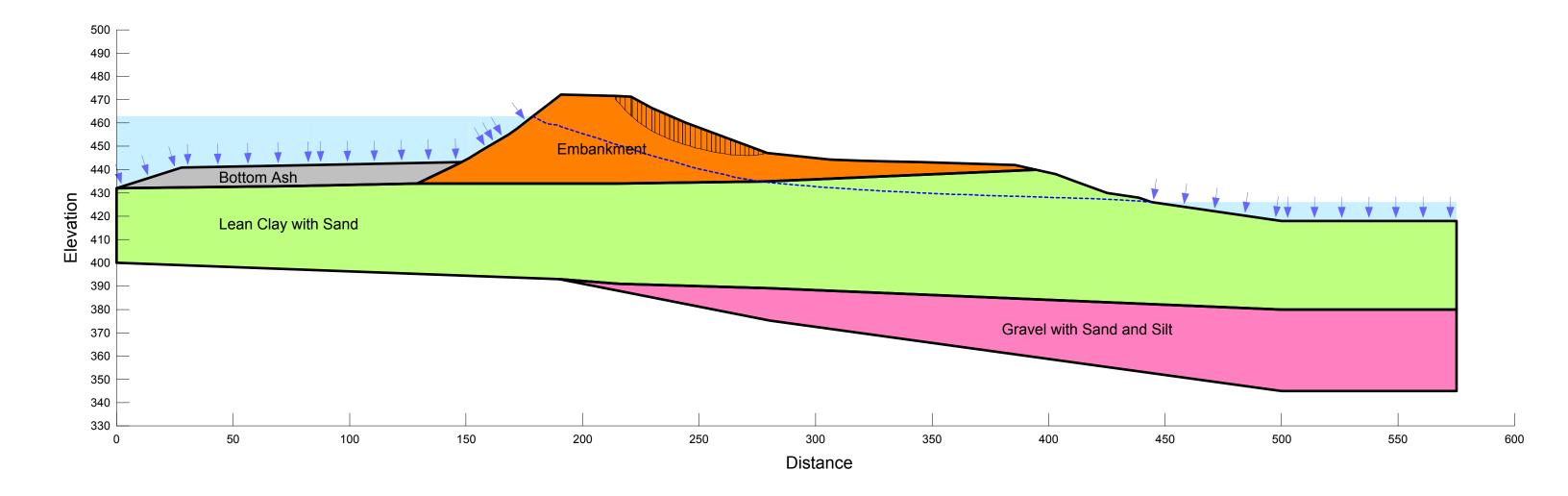
		Drained Strength Parameters		
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	
Embankment (Drained)	130	33.2	165	
Lean Clay With Sand (Drained)	119	27.2	160	
Gravel With Silt And Sand (Drained)	130	35	0	
Bottom Ash (Drained)	115	28	0	



L02_Normal Pool, Upstream Slope Failure Normal Pool Elevation: 448 Feet Drained Static Strengths Incipient Motion in the Upstream Direction Section B-B'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

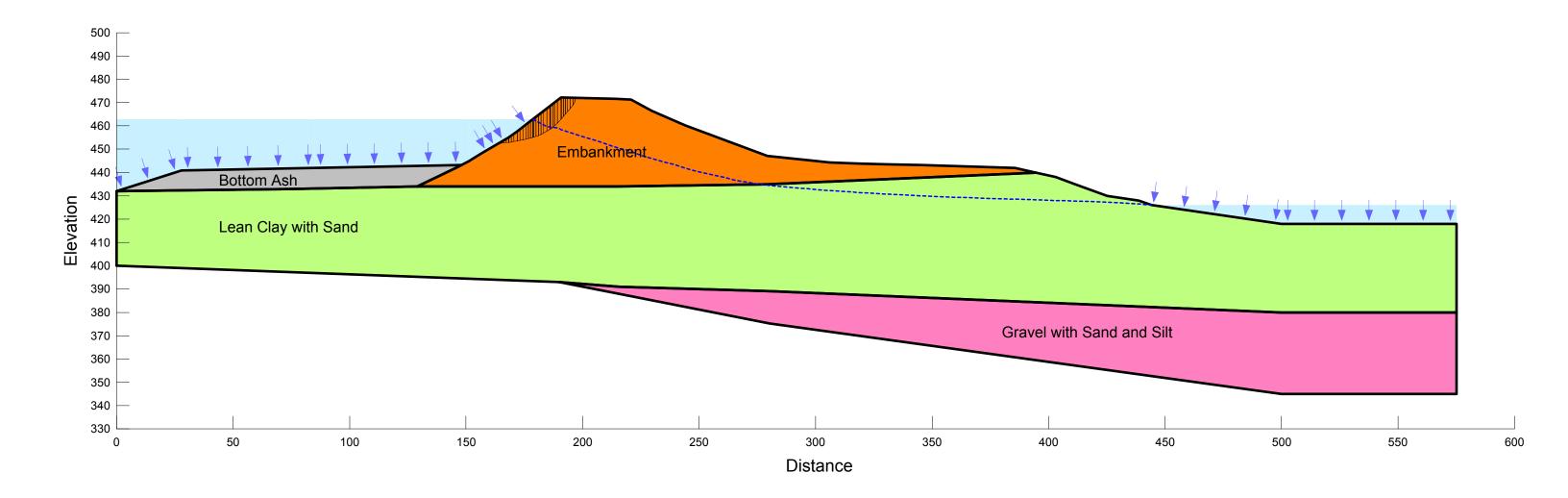
No warranties can be made regarding the continuity of subsurface conditions.


		Drained Strength Parameters		
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	
Embankment (Drained)	130	33.2	165	
Lean Clay With Sand (Drained)	119	27.2	160	
Gravel With Silt And Sand (Drained)	130	35	0	
Bottom Ash (Drained)	115	28	0	

L03_50% PMF Pool, Downstream Slope Failure 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Incipient Motion in the Downstream Direction Section B-B'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

		Drained Strength Parameters		
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	
Embankment (Drained)	130	33.2	165	
Lean Clay With Sand (Drained)	119	27.2	160	
Gravel With Silt And Sand (Drained)	130	35	0	
Bottom Ash (Drained)	115	28	0	



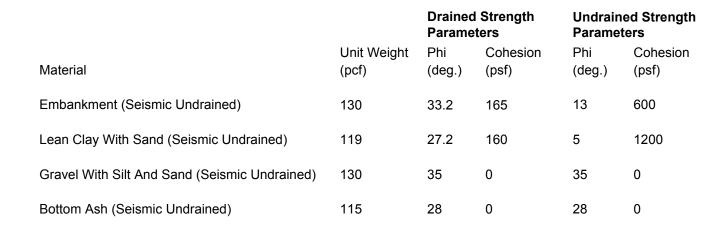
L04_50% PMF Pool, Upstream Slope Failure 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Incipient Motion in the Upstream Direction Section B-B'

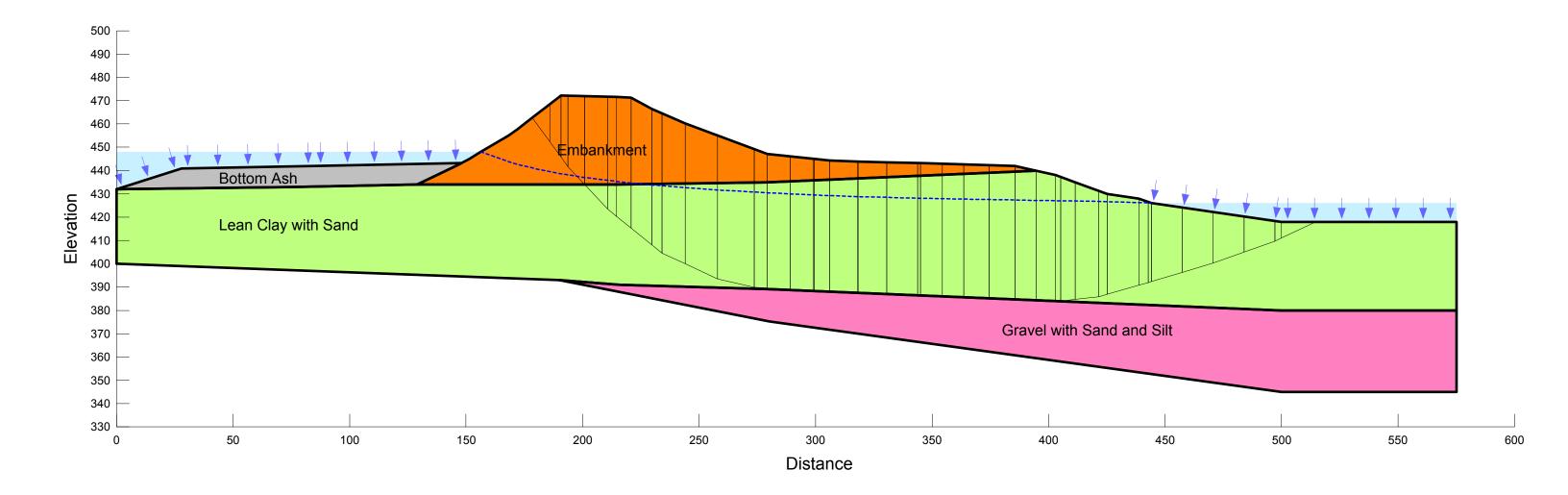
Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

		Drained Strength Parameters		
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	
Embankment (Drained)	130	33.2	165	
Lean Clay With Sand (Drained)	119	27.2	160	
Gravel With Silt And Sand (Drained)	130	35	0	
Bottom Ash (Drained)	115	28	0	

L05_Seismic_Normal Pool, Downstream Slope Failure Normal Pool Elevation: 448 Feet

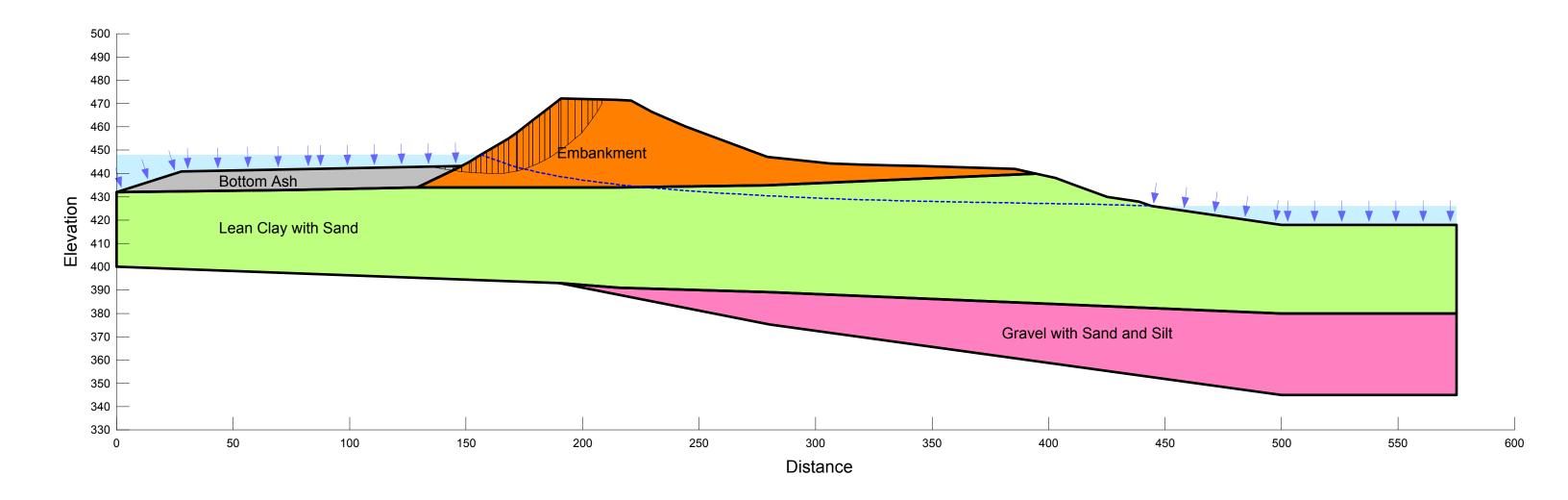

Undrained Static Strengths


Incipient Motion in the Downstream Direction

Horizontal Acc: 0.085g

Section B-B'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

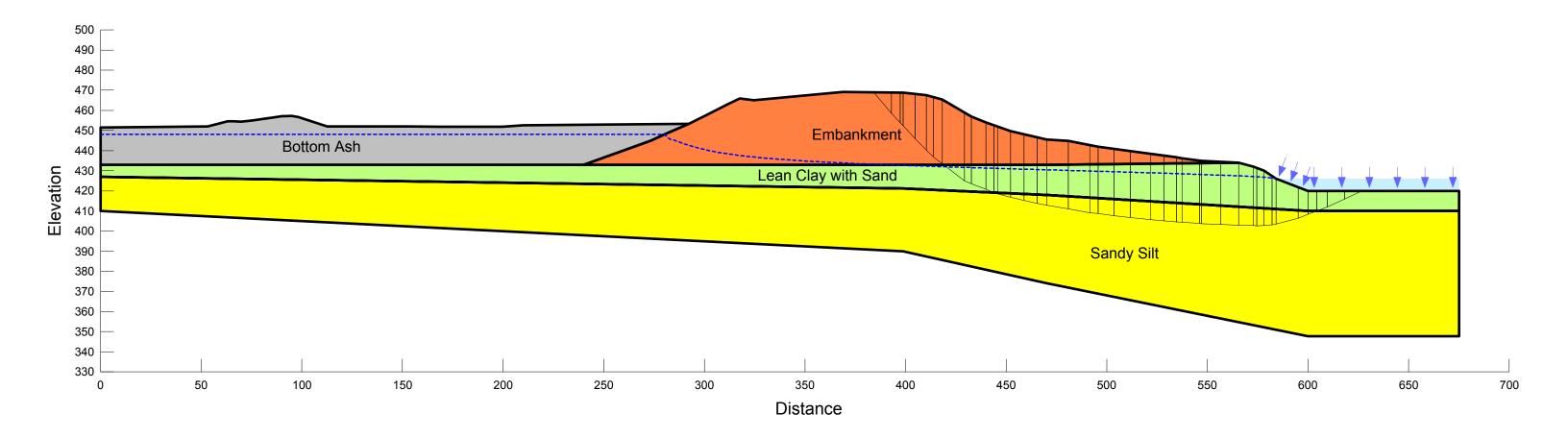

L06_Seismic_Normal Pool, Upstream Slope Failure Normal Pool Elevation: 448 Feet **Undrained Static Strengths** Incipient Motion in the Upstream Direction

Horizontal Acc: 0.085g

Section B-B'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling. No warranties can be made regarding the continuity of subsurface conditions.

		Drained Strength Parameters		Undrained Strengt Parameters	
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	Phi (deg.)	Cohesion (psf)
Embankment (Seismic Undrained)	130	33.2	165	13	600
Lean Clay With Sand (Seismic Undrained)	119	27.2	160	5	1200
Gravel With Silt And Sand (Seismic Undrained)	130	35	0	35	0
Bottom Ash (Seismic Undrained)	115	28	0	28	0

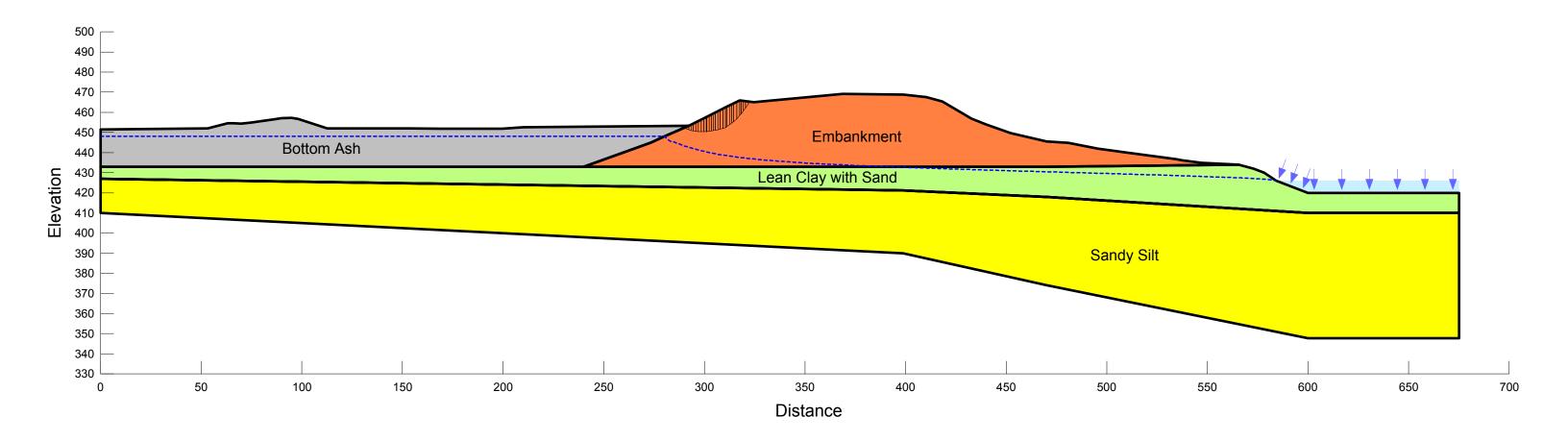


American Electric Power (AEP) Clifty Creek West Boiler Slag Pond Dam Madison, Indiana CCR Mandate

L01_Normal Pool, Downstream Slope Failure Normal Pool Elevation: 448 Feet Drained Static Strengths Incipient Motion in the Downstream Direction Section C-C'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

		Parameters		
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	
Embankment (Drained)	130	33.2	165	
Lean Clay with Sand (Drained)	119	27.2	160	
Sandy Silt (Drained)	130	30	0	
Bottom Ash (Drained)	115	28	0	

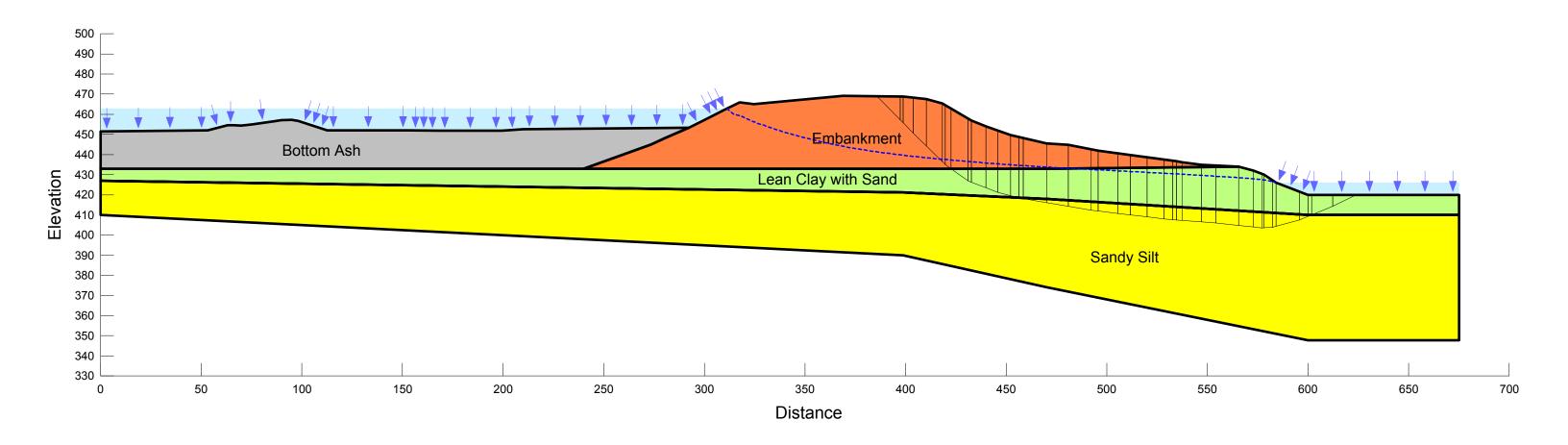


American Electric Power (AEP) Clifty Creek West Boiler Slag Pond Dam Madison, Indiana CCR Mandate

L02_Normal Pool, Upstream Slope Failure Normal Pool Elevation: 448 Feet Drained Static Strengths Incipient Motion in the Upstream Direction Section C-C'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

		Parameters		
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	
Embankment (Drained)	130	33.2	165	
Lean Clay with Sand (Drained)	119	27.2	160	
Sandy Silt (Drained)	130	30	0	
Bottom Ash (Drained)	115	28	0	

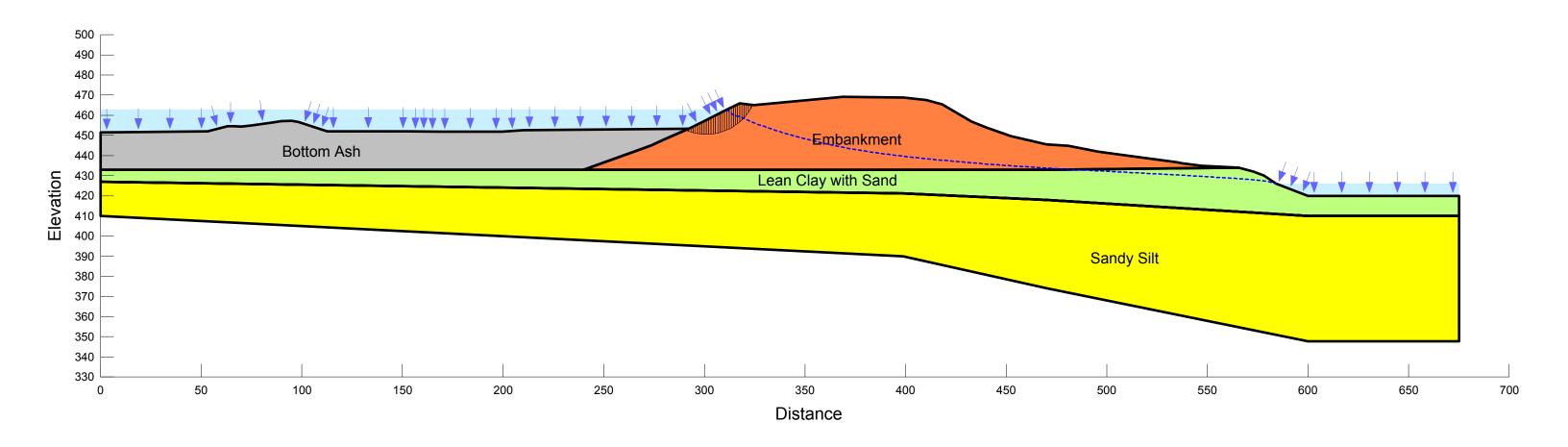


American Electric Power (AEP) Clifty Creek West Boiler Slag Pond Dam Madison, Indiana CCR Mandate

L03_50% PMF Pool, Downstream Slope Failure 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Incipient Motion in the Downstream Direction Section C-C'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

		Parame	ters
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)
Embankment (Drained)	130	33.2	165
Lean Clay with Sand (Drained)	119	27.2	160
Sandy Silt (Drained)	130	30	0
Bottom Ash (Drained)	115	28	0



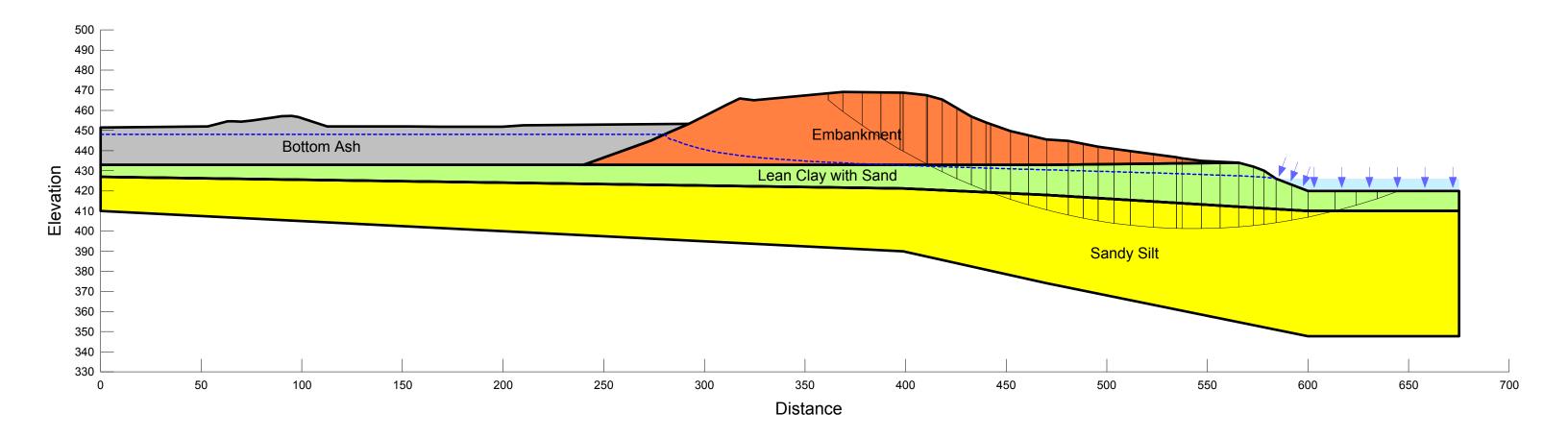
American Electric Power (AEP) Clifty Creek West Boiler Slag Pond Dam Madison, Indiana CCR Mandate

L04_50% PMF Pool, Upstream Slope Failure 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Incipient Motion in the Upstream Direction Section C-C'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

		Parame	ters
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)
Embankment (Drained)	130	33.2	165
Lean Clay with Sand (Drained)	119	27.2	160
Sandy Silt (Drained)	130	30	0
Bottom Ash (Drained)	115	28	0

L05_Seismic_Normal Pool, Downstream Slope Failure Normal Pool Elevation: 448 Feet Undrained Static Strengths

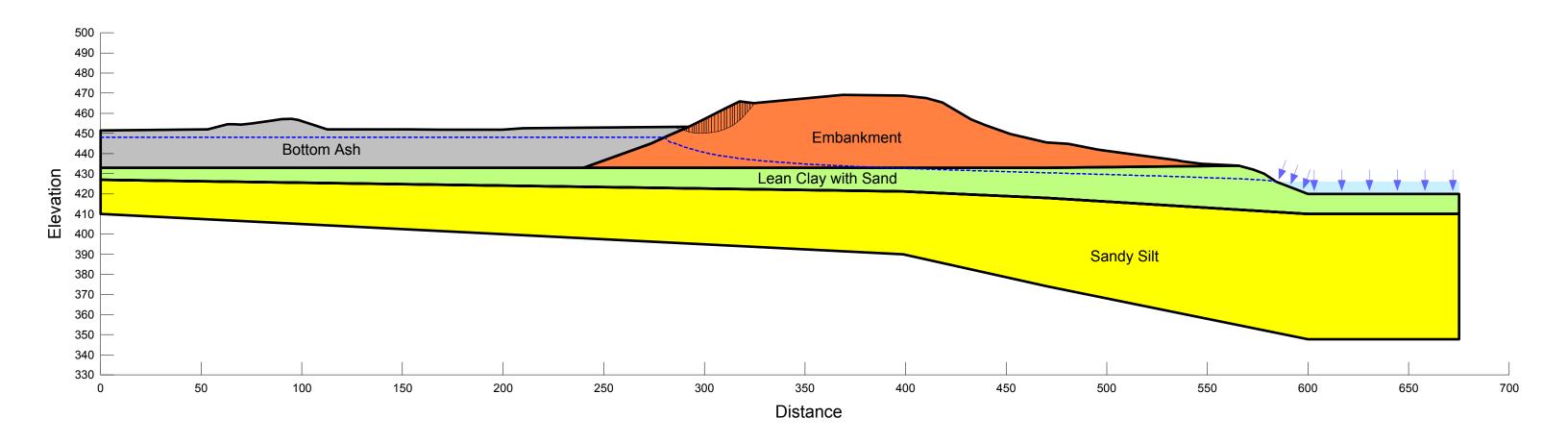

Incipient Motion in the Downstream Direction

Horizontal Acc: 0.085g

Section C-C'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

			Drained Strength Parameters		Undrained Strength Parameters		
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	Phi (deg.)	Cohesion (psf)		
Embankment (Seismic Undrained)	130	33.2	165	13	600		
Lean Clay with Sand (Seismic Undrained)	119	27.2	160	5	1200		
Sandy Silt (Seismic Undrained)	130	30	0	30	0		
Bottom Ash (Seismic Undrained)	115	28	0	28	0		



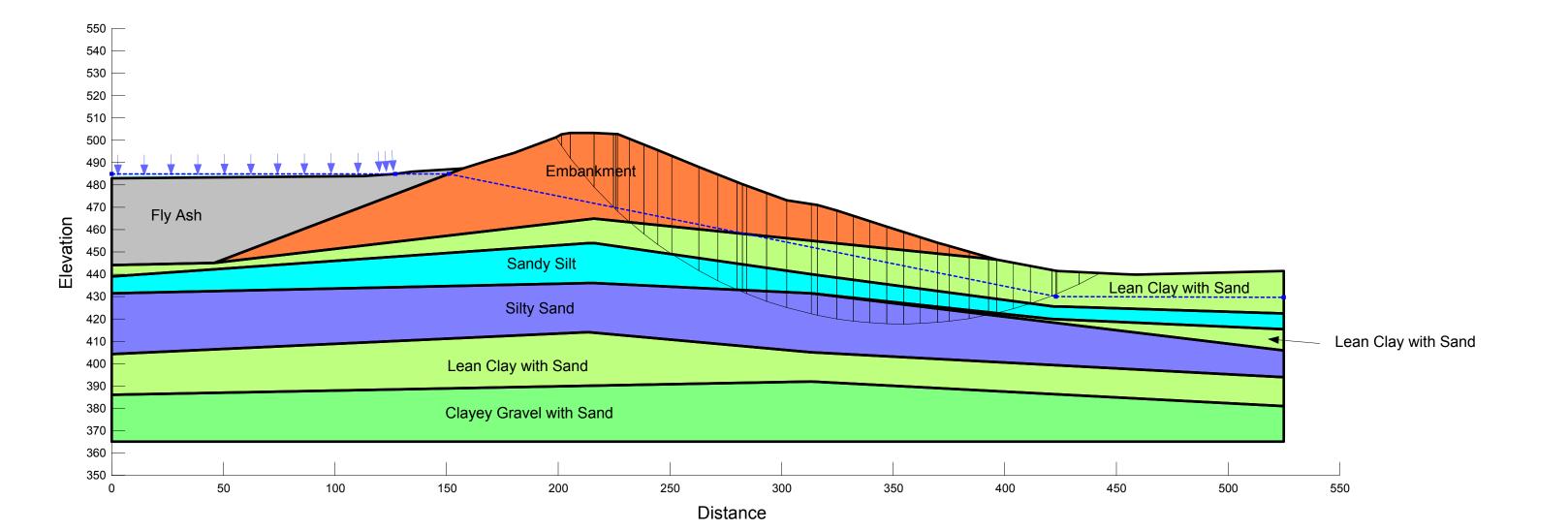
L06_Seismic_Normal Pool, Upstream Slope Failure Normal Pool Elevation: 448 Feet Undrained Static Strengths Incipient Motion in the Upstream Direction Horizontal Acc: 0.085g

Section C-C'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

		Drained Strength Parameters		Undrained Strength Parameters	
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	Phi (deg.)	Cohesion (psf)
Embankment (Seismic Undrained)	130	33.2	165	13	600
Lean Clay with Sand (Seismic Undrained)	119	27.2	160	5	1200
Sandy Silt (Seismic Undrained)	130	30	0	30	0
Bottom Ash (Seismic Undrained)	115	28	0	28	0

LANDFILL RUNOFF COLLECTION POND: 2015 CCR MANDATE

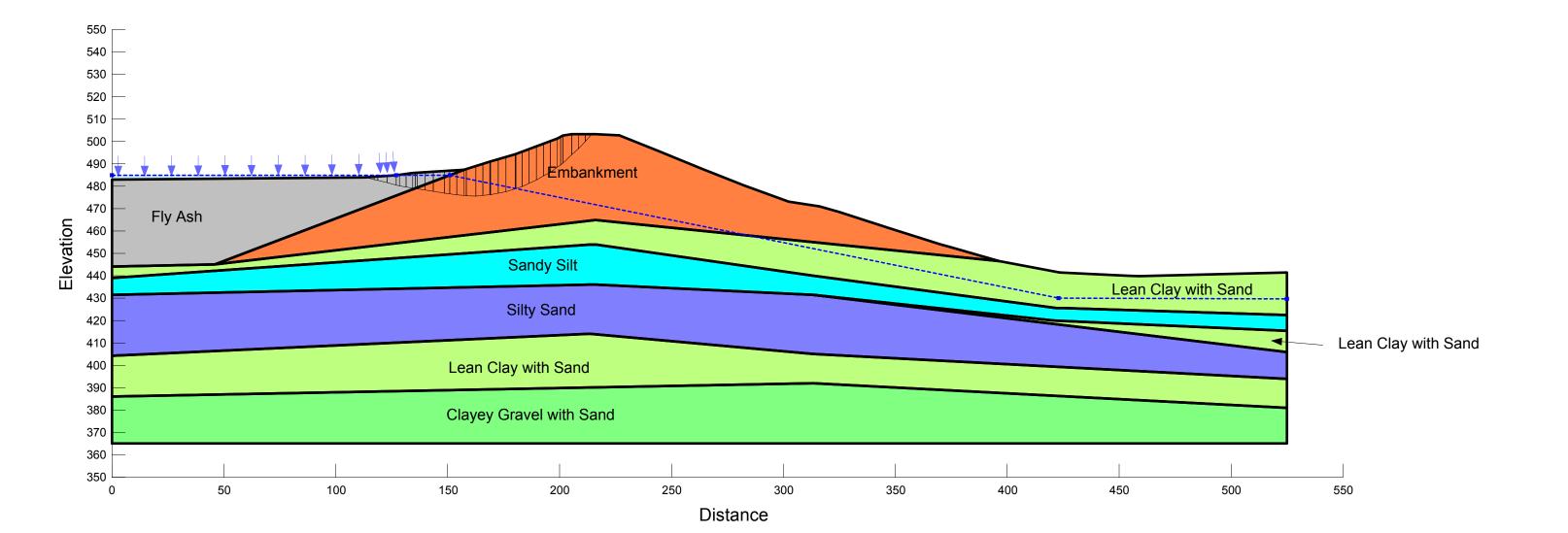

L01_Normal Pool, Downstream Slope Failure Normal Pool Elevation: 485 Feet Drained Static Strengths Incipient Motion in the Downstream Direction Section D-D'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Factor of Safety = 1.85

Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)
Embankment (Drained)	129	27.5	198
Lean Clay with Sand (Drained)	127	28	206
Sandy Silt (Drained)	125	30	0
Silty Sand (Drained)	94	30	0
Clayey Gravel with Sand (Drained)	130	35	0
Fly Ash (Drained)	115	25	0

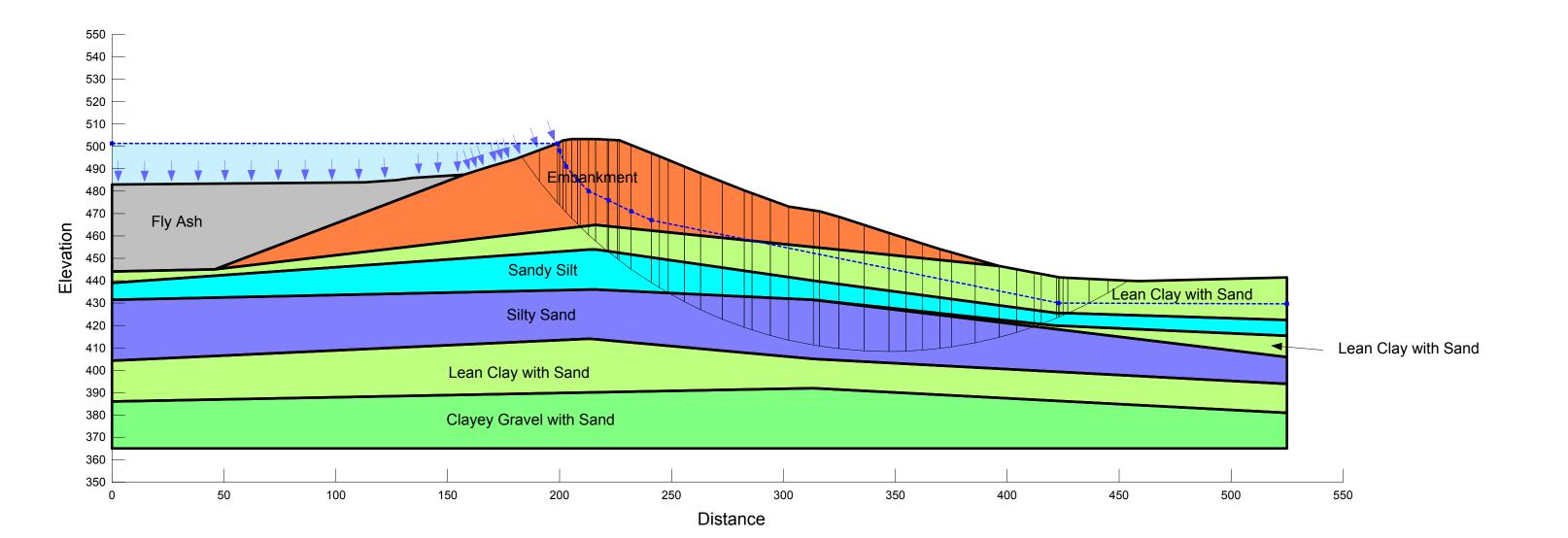

L02_Normal Pool, Upstream Slope Failure Normal Pool Elevation: 485 Feet Drained Static Strengths Incipient Motion in the Upstream Direction Section D-D'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Factor of Safety = 2.73

Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)
Embankment (Drained)	129	27.5	198
Lean Clay with Sand (Drained)	127	28	206
Sandy Silt (Drained)	125	30	0
Silty Sand (Drained)	94	30	0
Clayey Gravel with Sand (Drained)	130	35	0
Fly Ash (Drained)	115	25	0

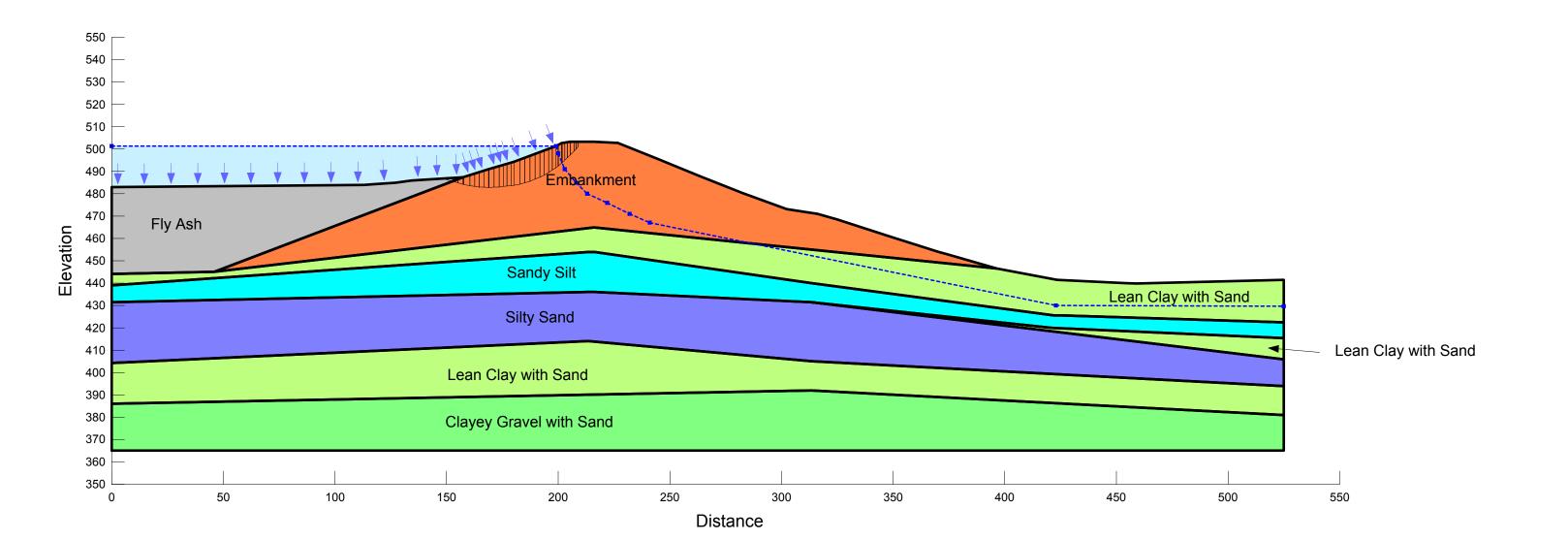

L03_PMF Pool, Downstream Slope Failure PMF Pool Elevation: 501.4 Feet Drained Static Strengths Incipient Motion in the Downstream Direction Section D-D'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Factor of Safety = 1.81

Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)
Embankment (Drained)	129	27.5	198
Lean Clay with Sand (Drained)	127	28	206
Sandy Silt (Drained)	125	30	0
Silty Sand (Drained)	94	30	0
Clayey Gravel with Sand (Drained)	130	35	0
Fly Ash (Drained)	115	25	0

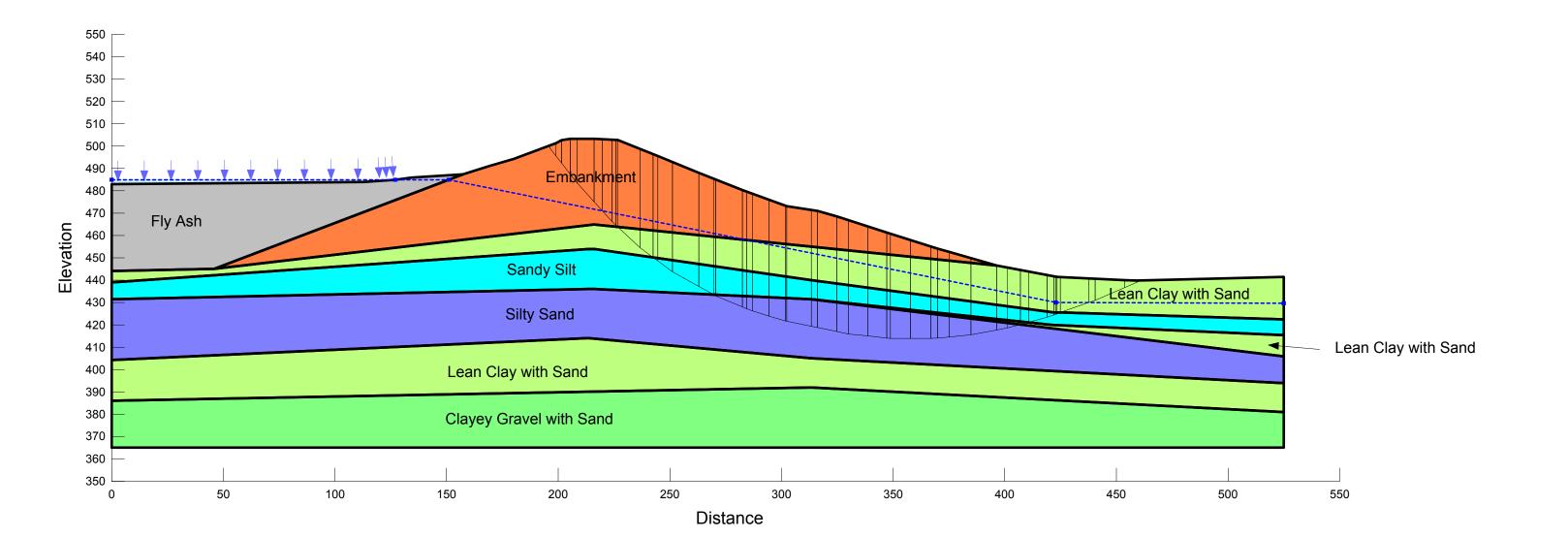

L04_PMF Pool, Upstream Slope Failure PMF Pool Elevation: 501.4 Feet Drained Static Strengths Incipient Motion in the Upstream Direction Section D-D'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Factor of Safety = 3.47

Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)
Embankment (Drained)	129	27.5	198
Lean Clay with Sand (Drained)	127	28	206
Sandy Silt (Drained)	125	30	0
Silty Sand (Drained)	94	30	0
Clayey Gravel with Sand (Drained)	130	35	0
Fly Ash (Drained)	115	25	0

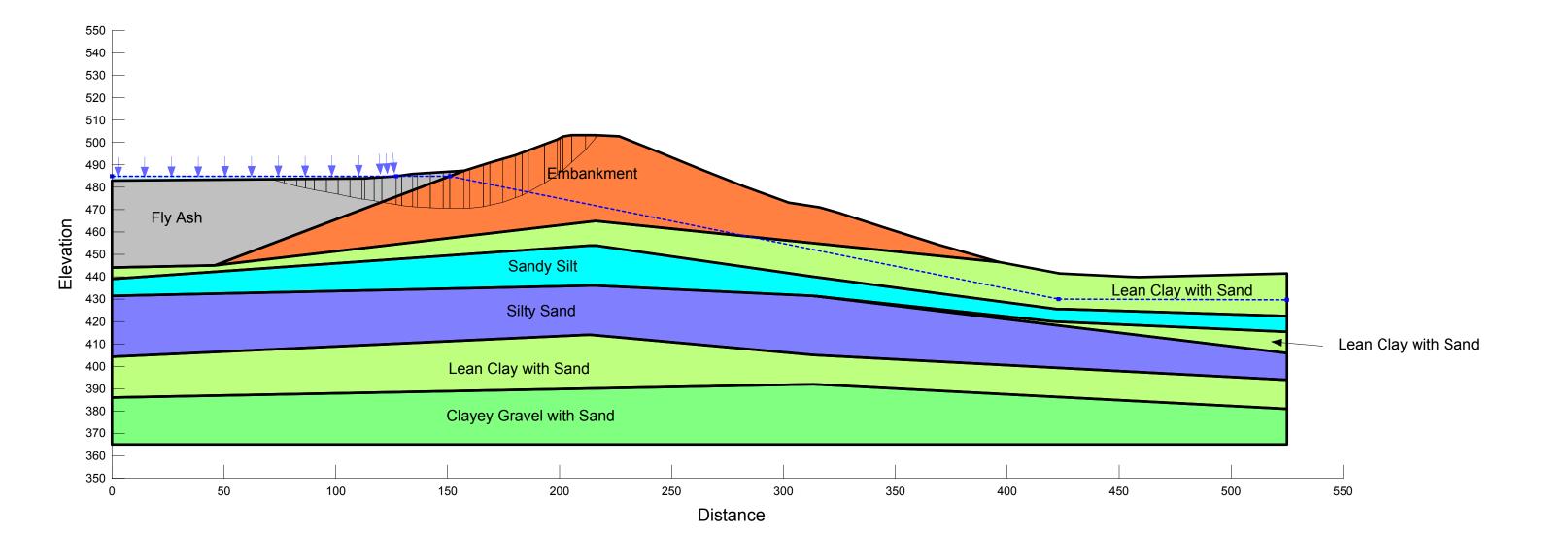

L05_Seismic_Normal Pool, Downstream Slope Failure Normal Pool Elevation: 485 Feet Undrained Static Strengths Incipient Motion in the Downstream Direction Horizontal Acc: 0.085g Section D-D'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Factor of Safety = 1.42

		Drained Strength Parameters		Undrained Strength Parameters	
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	Phi (deg.)	Cohesion (psf)
Embankment (Seismic Undrained)	129	27.5	198	21	1400
Lean Clay with Sand (Seismic Undrained)	127	28	206	17	1200
Sandy Silt (Seismic Undrained)	125	30	0	30	0
Silty Sand (Seismic Undrained)	94	30	0	30	0
Clayey Gravel with Sand (Seismic Undrained)	130	35	0	35	0
Fly Ash (Seismic Undrained)	115	25	0	25	0



L06_Seismic_Normal Pool, Upstream Slope Failure Normal Pool Elevation: 485 Feet Undrained Static Strengths Incipient Motion in the Upstream Direction Horizontal Acc: 0.085g Section D-D'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Factor of Safety = 1.94

	Drained Strength Parameters		Undrained Strength Parameters		
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	Phi (deg.)	Cohesion (psf)
Embankment (Seismic Undrained)	129	27.5	198	21	1400
Lean Clay with Sand (Seismic Undrained)	127	28	206	17	1200
Sandy Silt (Seismic Undrained)	125	30	0	30	0
Silty Sand (Seismic Undrained)	94	30	0	30	0
Clayey Gravel with Sand (Seismic Undrained)	130	35	0	35	0
Fly Ash (Seismic Undrained)	115	25	0	25	0

L01_Normal Pool, Downstream Crest Loss Normal Pool Elevation: 485 Feet Drained Static Strengths Incipient Motion in the Downstream Direction Section E-E'

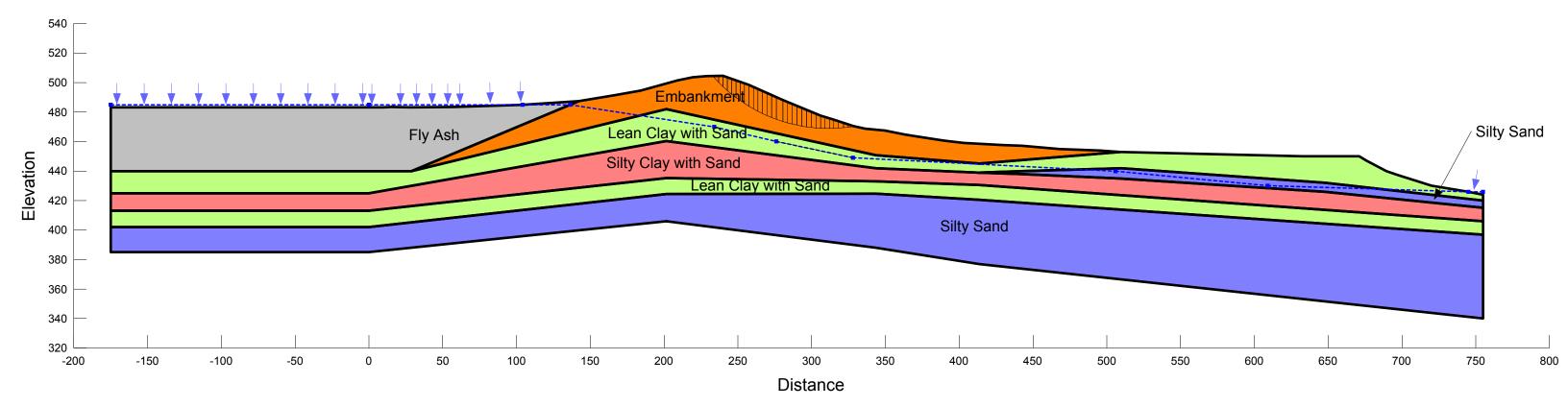
Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Factor of Safety = 1.99

Drained Strength

Parameters


34

152

Unit Weight Phi Cohesion Material (pcf) (deg.) (psf) Embankment (Drained) 129 27.5 198 Lean Clay with Sand (Drained) 127 28 206 Silty Sand (Drained) 94 30 0 Fly Ash (Drained) 115 25 0

118

Silty Clay with Sand (Drained)

L02_Normal Pool, Upstream Crest Loss Normal Pool Elevation: 485 Feet Drained Static Strengths Incipient Motion in the Downstream Direction Section E-E'

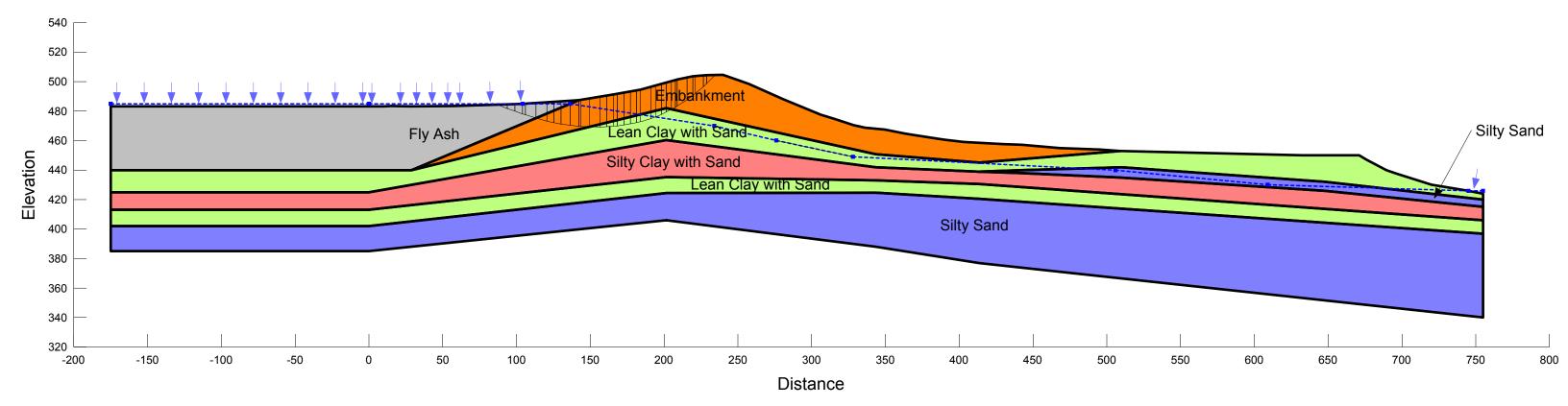
Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Factor of Safety = 3.51

Drained Strength

Parameters


34

152

Unit Weight Phi Cohesion Material (pcf) (deg.) (psf) Embankment (Drained) 129 27.5 198 Lean Clay with Sand (Drained) 127 28 206 Silty Sand (Drained) 94 30 0 Fly Ash (Drained) 115 25 0

118

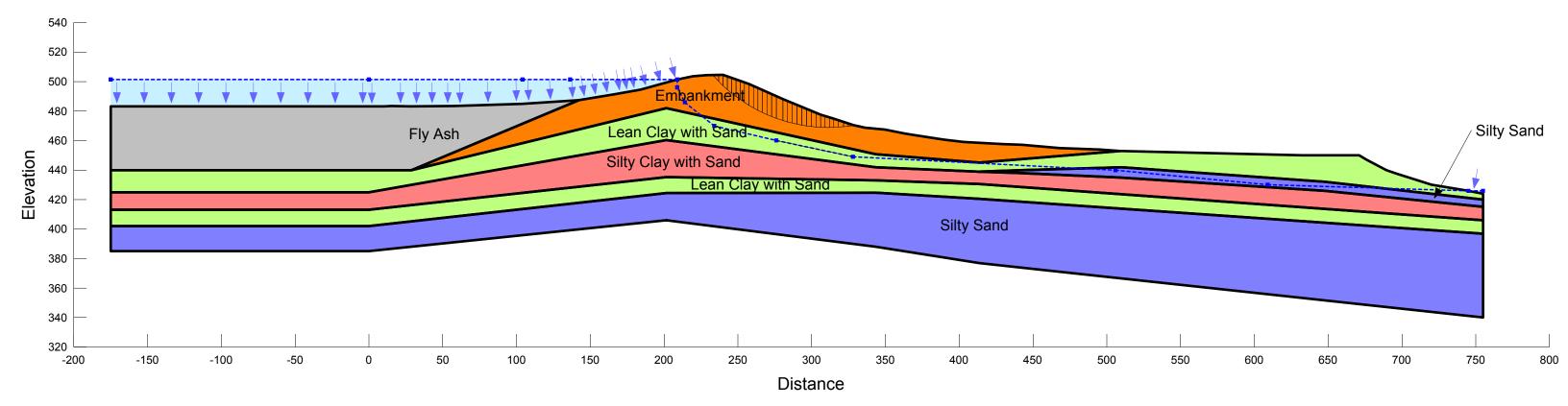
Silty Clay with Sand (Drained)

L03_PMF Pool, Downstream Crest Loss PMF Pool Elevation: 501.4 Feet Drained Static Strengths Incipient Motion in the Downstream Direction Section E-E'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Factor of Safety = 1.99

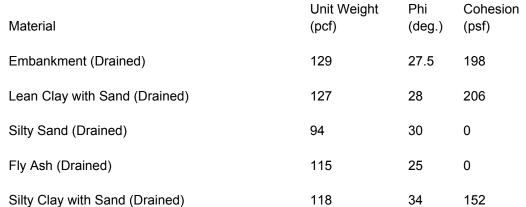

Drained Strength Parameters

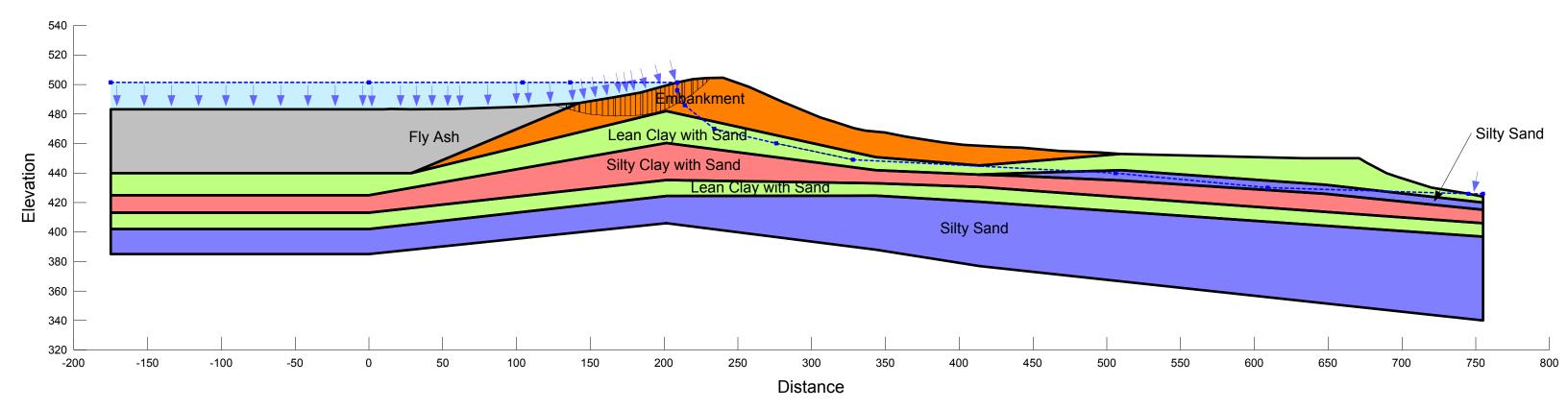
152

Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)
Embankment (Drained)	129	27.5	198
Lean Clay with Sand (Drained)	127	28	206
Silty Sand (Drained)	94	30	0
Fly Ash (Drained)	115	25	0

118

Silty Clay with Sand (Drained)

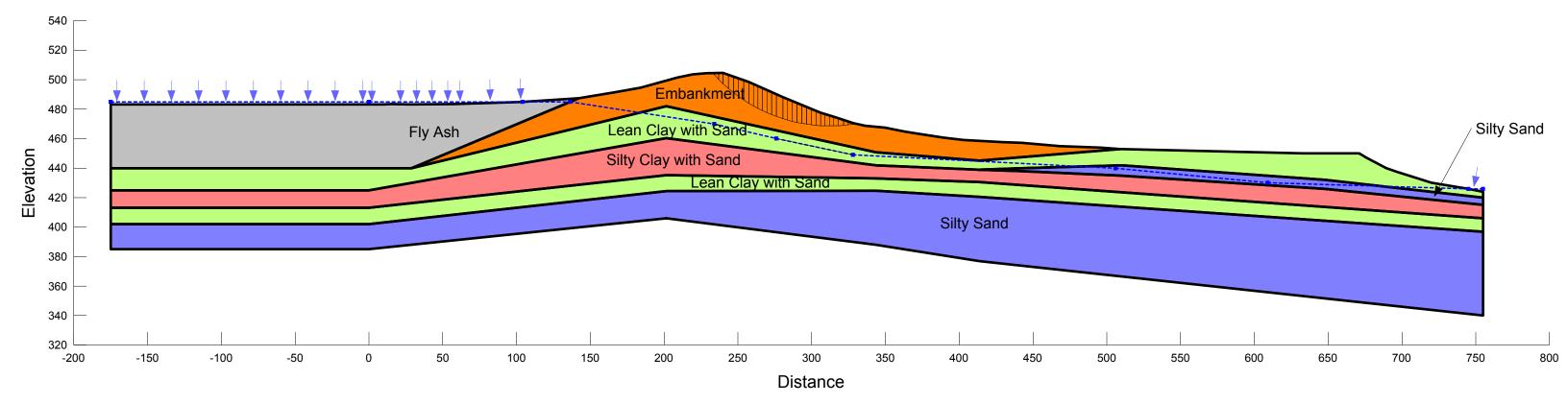



L04_PMF Pool, Upstream Crest Loss PMF Pool Elevation: 501.4 Feet Drained Static Strengths Incipient Motion in the Downstream Direction Section E-E'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Factor of Safety = 4.51

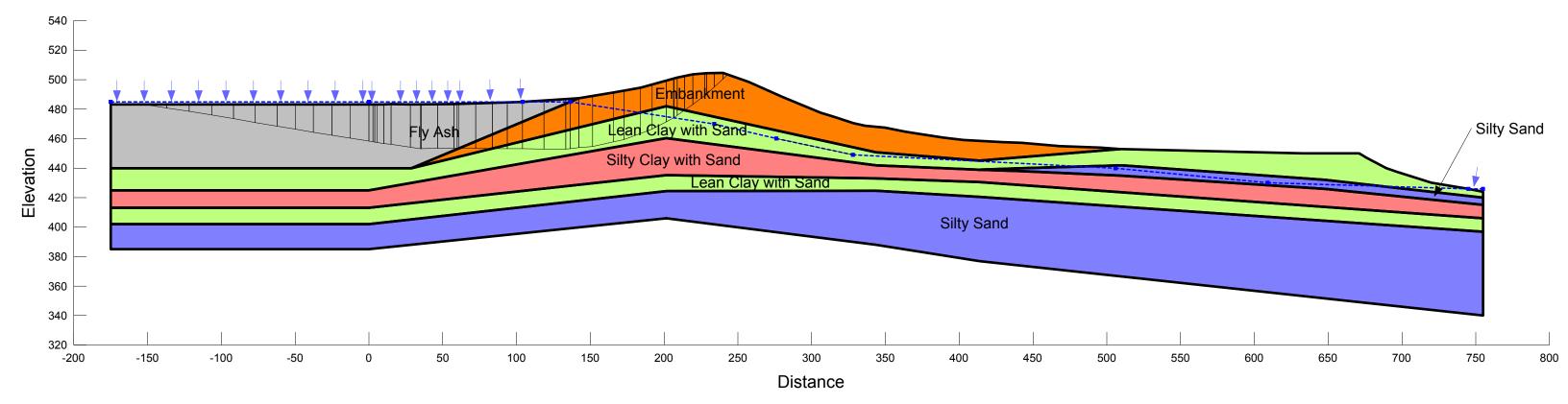

L05_Seismic_Normal Pool, Downstream Crest Loss Normal Pool Elevation: 485 Feet Undrained Static Strengths Incipient Motion in the Downstream Direction Horizontal Acc: 0.085g Section E-E'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Factor of Safety = 1.64

		Drained Strength Parameters		Undrained Strength Parameters	
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	Phi (deg.)	Cohesion (psf)
Embankment (Seismic Undrained)	129	27.5	198	21	1400
Lean Clay with Sand (Seismic Undrained)	127	28	206	17	1200
Silty Sand (Seismic Undrained)	94	30	0	30	0
Fly Ash (Seismic Undrained)	115	25	0	25	0
Silty Clay with Sand (Seismic Undrained)	118	34	152	20	1000

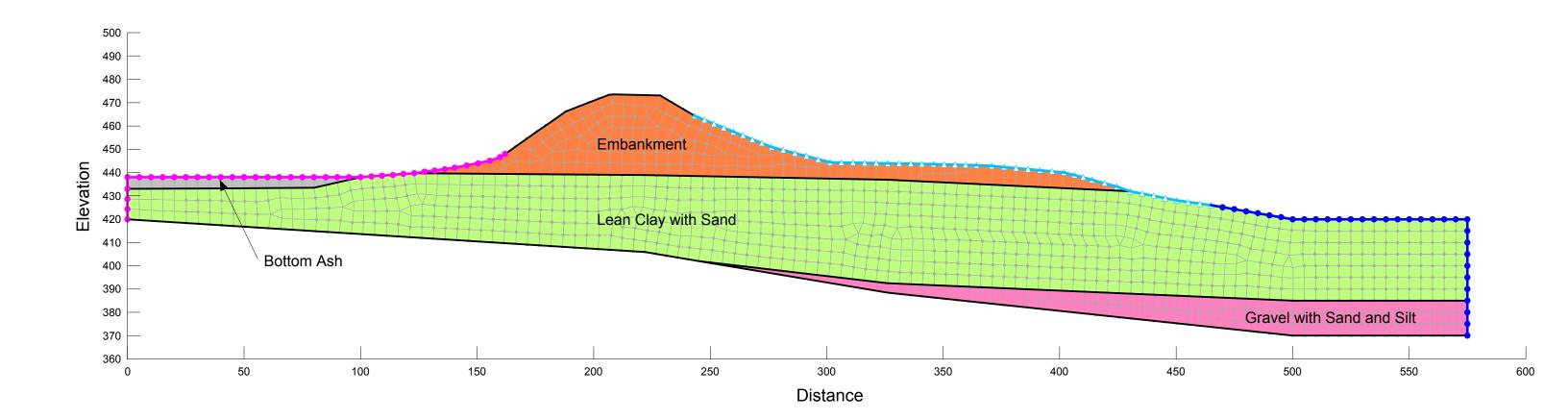

L06_Seismic_Normal Pool, Upstream Crest Loss Normal Pool Elevation: 485 Feet Undrained Static Strengths Incipient Motion in the Upstream Direction Horizontal Acc: 0.085g Section E-E'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Factor of Safety = 2.28

		Drained Strength Parameters		Undrained Strength Parameters	
Material	Unit Weight (pcf)	Phi (deg.)	Cohesion (psf)	Phi (deg.)	Cohesion (psf)
Embankment (Seismic Undrained)	129	27.5	198	21	1400
Lean Clay with Sand (Seismic Undrained)	127	28	206	17	1200
Silty Sand (Seismic Undrained)	94	30	0	30	0
Fly Ash (Seismic Undrained)	115	25	0	25	0
Silty Clay with Sand (Seismic Undrained)	118	34	152	20	1000

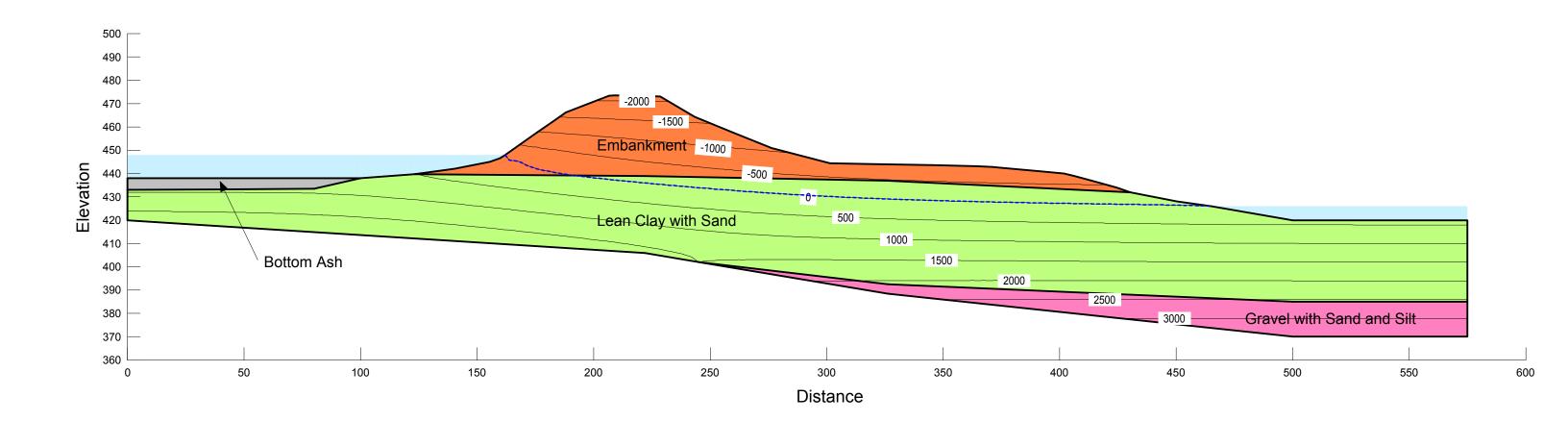

SEEP MODELS, 2015

Seepage Analysis Boundary Condition and Mesh

SEEP Steady State Normal Pool Normal Pool Elevation: 448 Feet Drained Static Strengths Section A-A'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay with Sand (Drained)	2.83e-007	0.1	0.41	0.09
Gravel With Silt and Sand (Drained)	0.00164	0.2	0.23	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

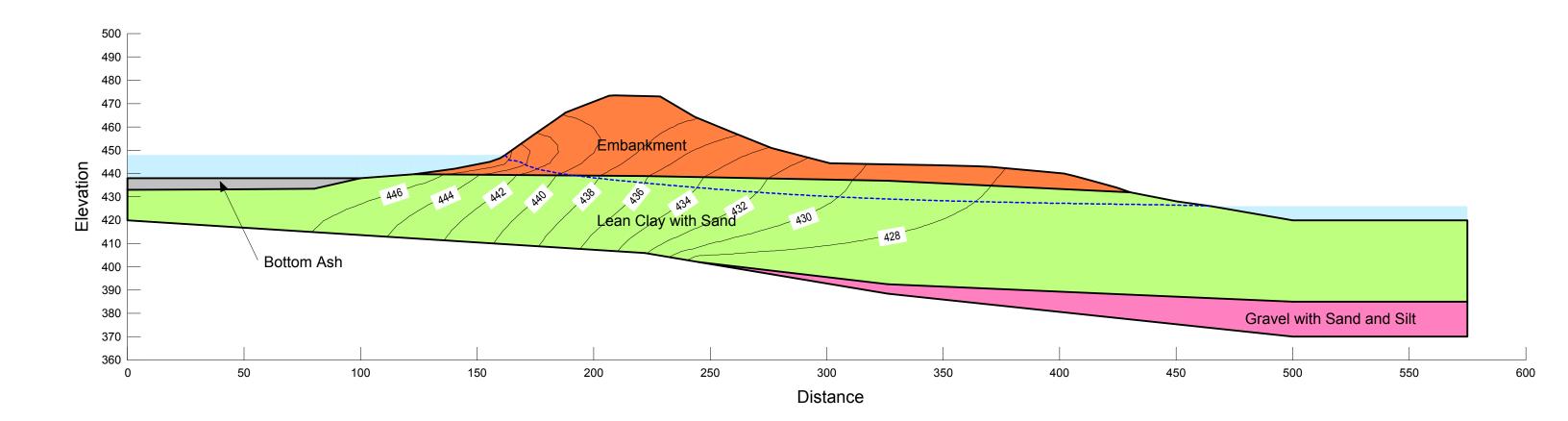


Seepage Analysis
Pore Water Pressure Contour (psf)

SEEP Steady State Normal Pool Normal Pool Elevation: 448 Feet Drained Static Strengths Section A-A'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay with Sand (Drained)	2.83e-007	0.1	0.41	0.09
Gravel With Silt and Sand (Drained)	0.00164	0.2	0.23	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027



Seepage Analysis Total Head Contour (feet)

SEEP Steady State Normal Pool Normal Pool Elevation: 448 Feet Drained Static Strengths Section A-A'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

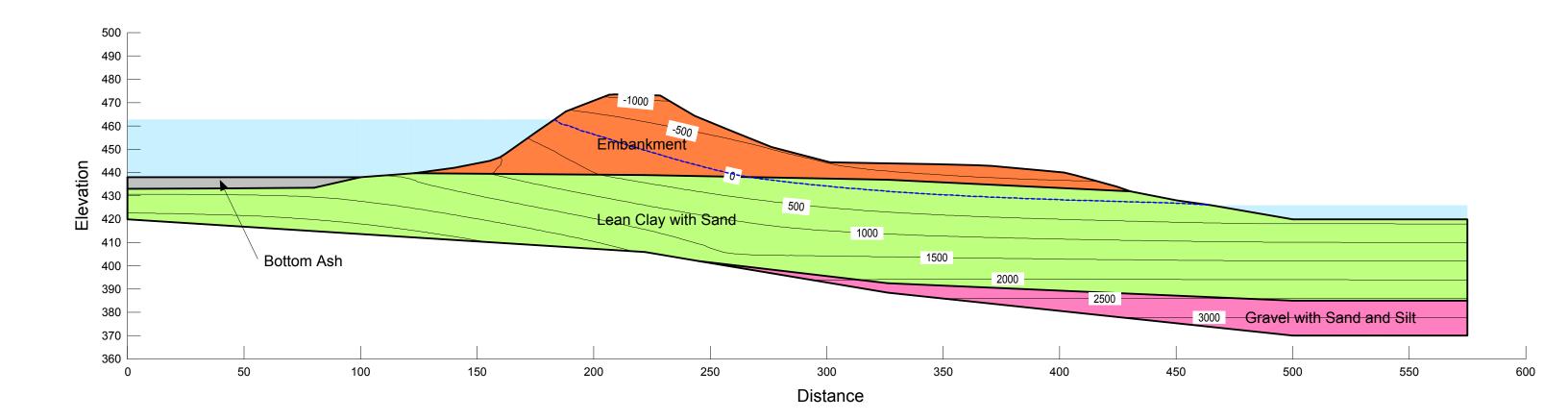
Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay with Sand (Drained)	2.83e-007	0.1	0.41	0.09
Gravel With Silt and Sand (Drained)	0.00164	0.2	0.23	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

Seepage Analysis Boundary Condition and Mesh

SEEP Steady State 50% PMF Pool 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Section A-A'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay with Sand (Drained)	2.83e-007	0.1	0.41	0.09
Gravel With Silt and Sand (Drained)	0.00164	0.2	0.23	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

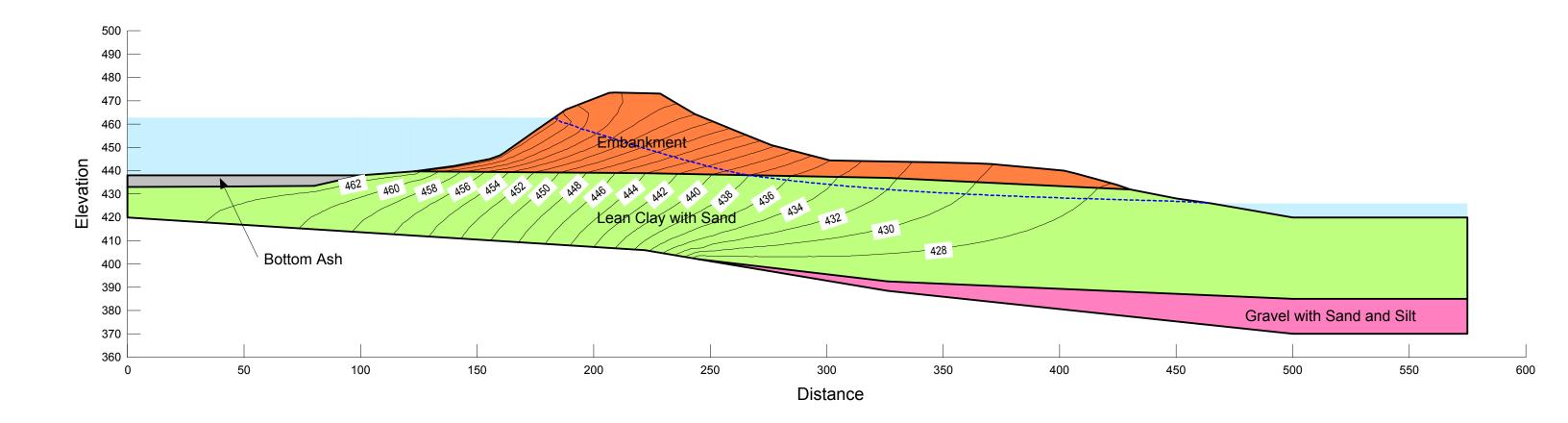


Seepage Analysis
Pore Water Pressure Contour (psf)

SEEP Steady State 50% PMF Pool 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Section A-A'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay with Sand (Drained)	2.83e-007	0.1	0.41	0.09
Gravel With Silt and Sand (Drained)	0.00164	0.2	0.23	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

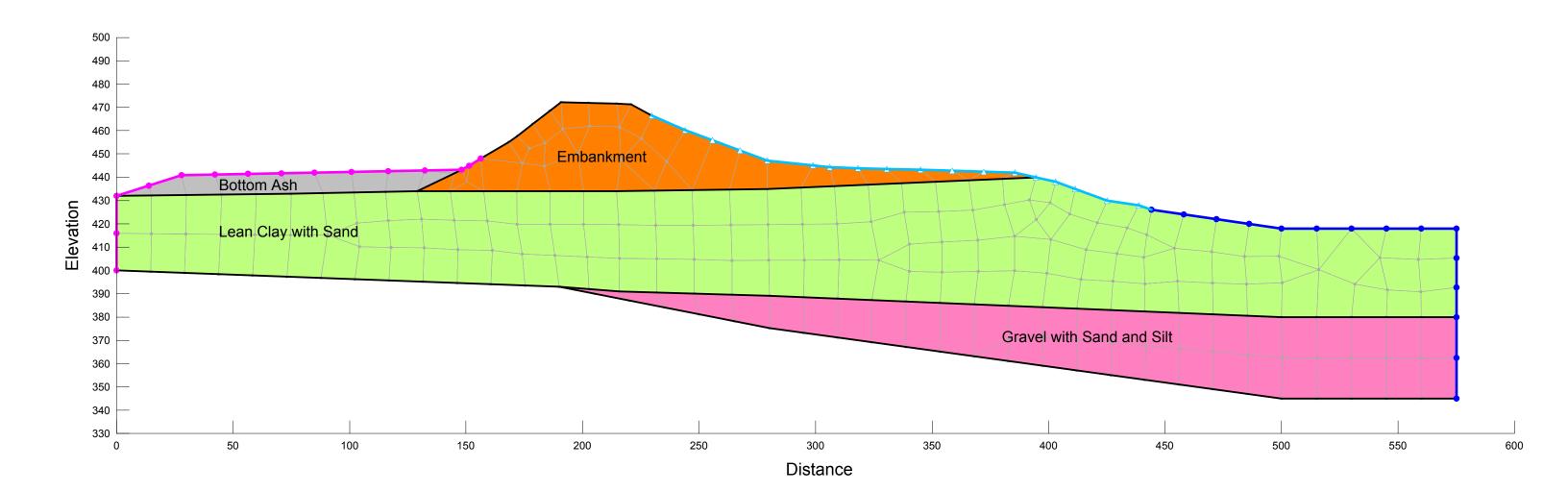


Seepage Analysis
Total Head Contour (feet)

SEEP Steady State 50% PMF Pool 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Section A-A'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay with Sand (Drained)	2.83e-007	0.1	0.41	0.09
Gravel With Silt and Sand (Drained)	0.00164	0.2	0.23	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

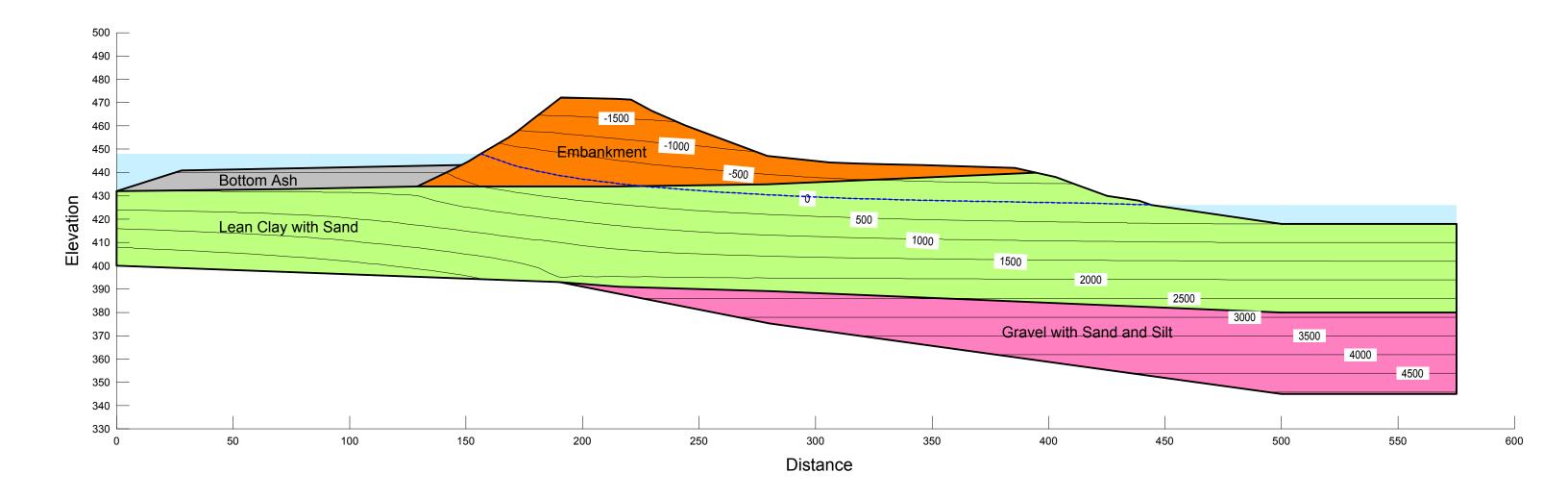

Seepage Analysis Boundary Condition and Mesh

SEEP Steady State Normal Pool Normal Pool Elevation: 448 Feet Drained Static Strengths Section B-B'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay With Sand (Drained)	2.83e-007	0.1	0.38	0.09
Gravel With Silt And Sand (Drained)	0.00164	0.2	0.23	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

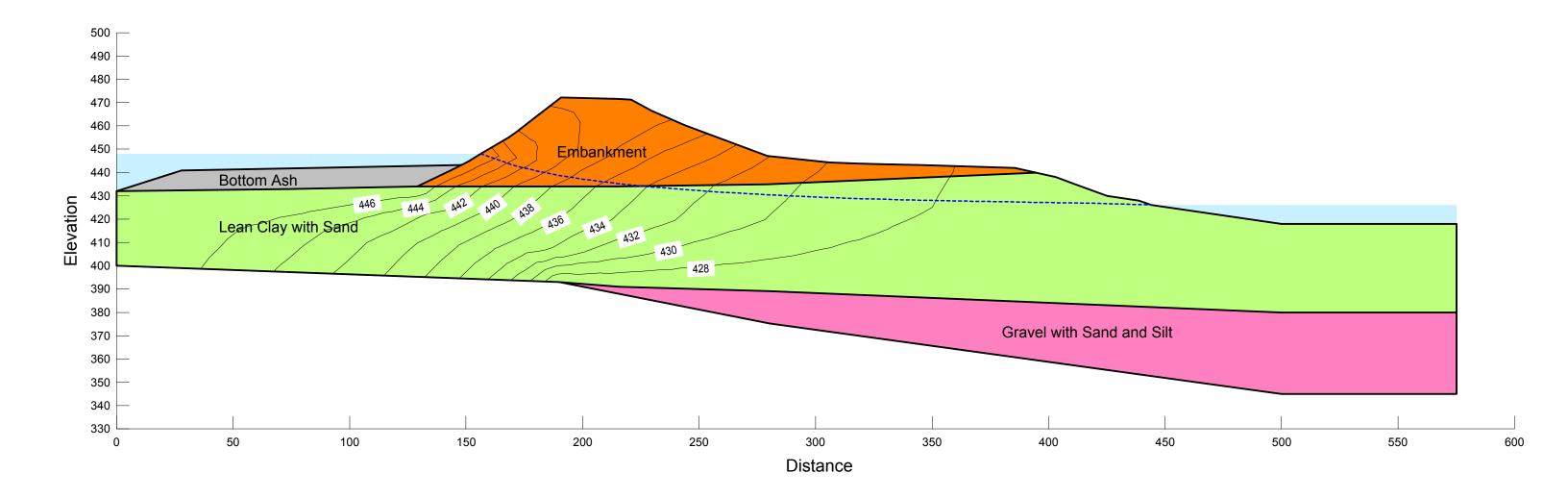


Seepage Analysis Pore Water Pressure Contour (psf)

SEEP Steady State Normal Pool Normal Pool Elevation: 448 Feet Drained Static Strengths Section B-B'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay With Sand (Drained)	2.83e-007	0.1	0.38	0.09
Gravel With Silt And Sand (Drained)	0.00164	0.2	0.23	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

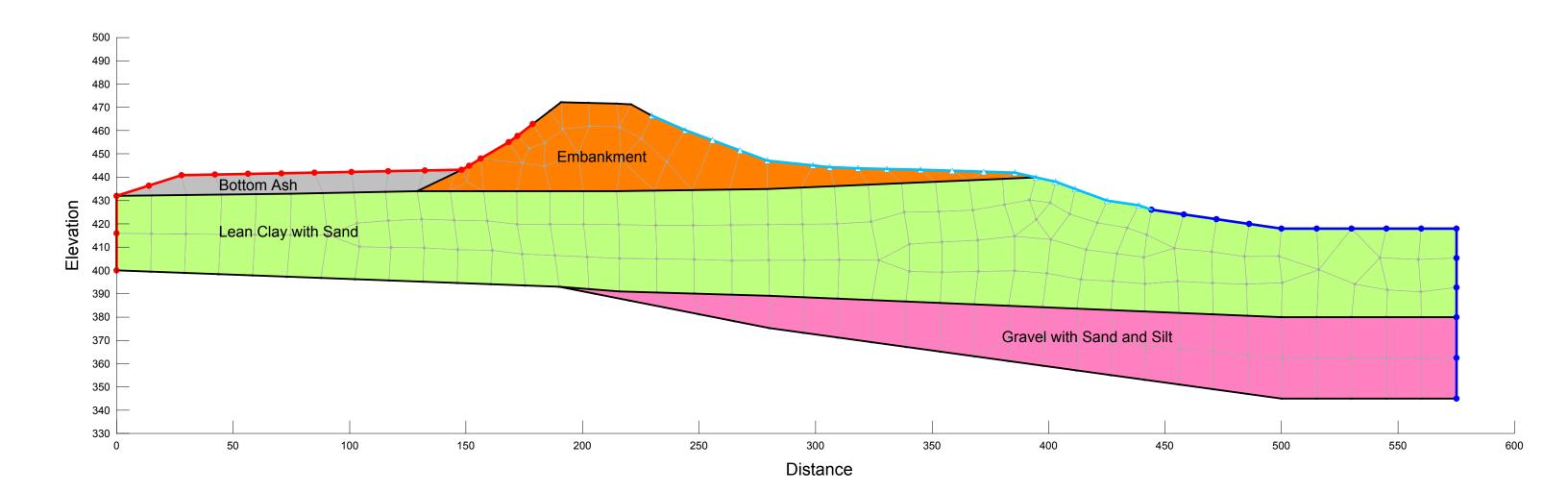


Seepage Analysis Total Head Contour (feet)

SEEP Steady State Normal Pool Normal Pool Elevation: 448 Feet Drained Static Strengths Section B-B'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay With Sand (Drained)	2.83e-007	0.1	0.38	0.09
Gravel With Silt And Sand (Drained)	0.00164	0.2	0.23	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

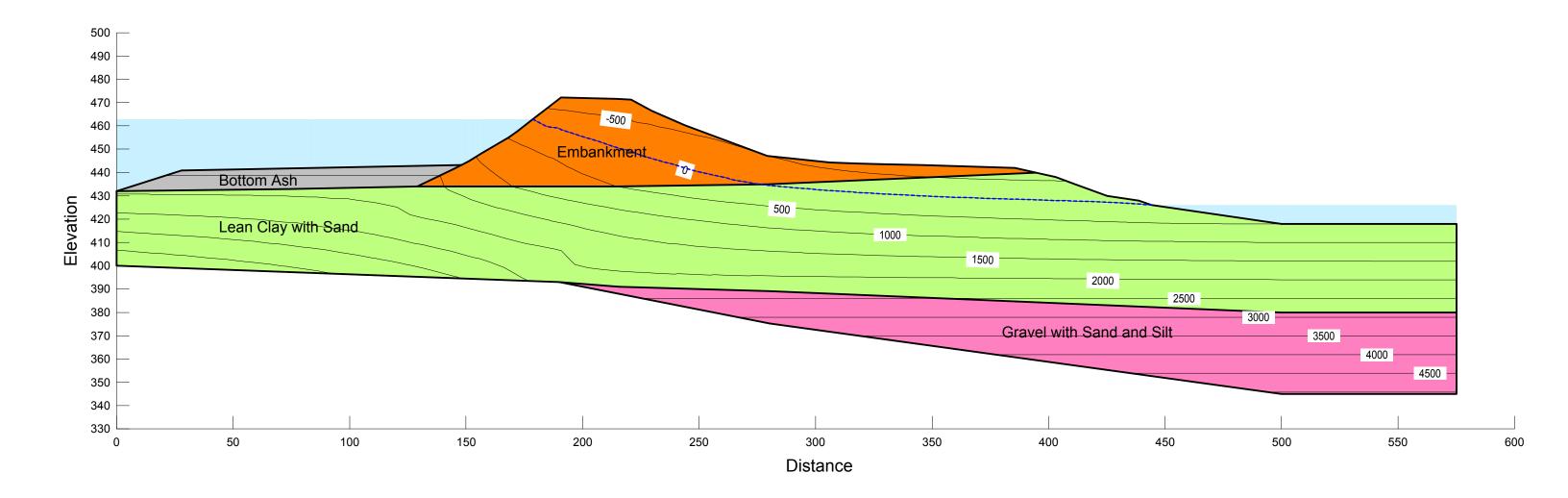


Seepage Analysis Boundary Condition and Mesh

SEEP Steady State 50% PMF Pool 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Section B-B'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay With Sand (Drained)	2.83e-007	0.1	0.38	0.09
Gravel With Silt And Sand (Drained)	0.00164	0.2	0.23	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

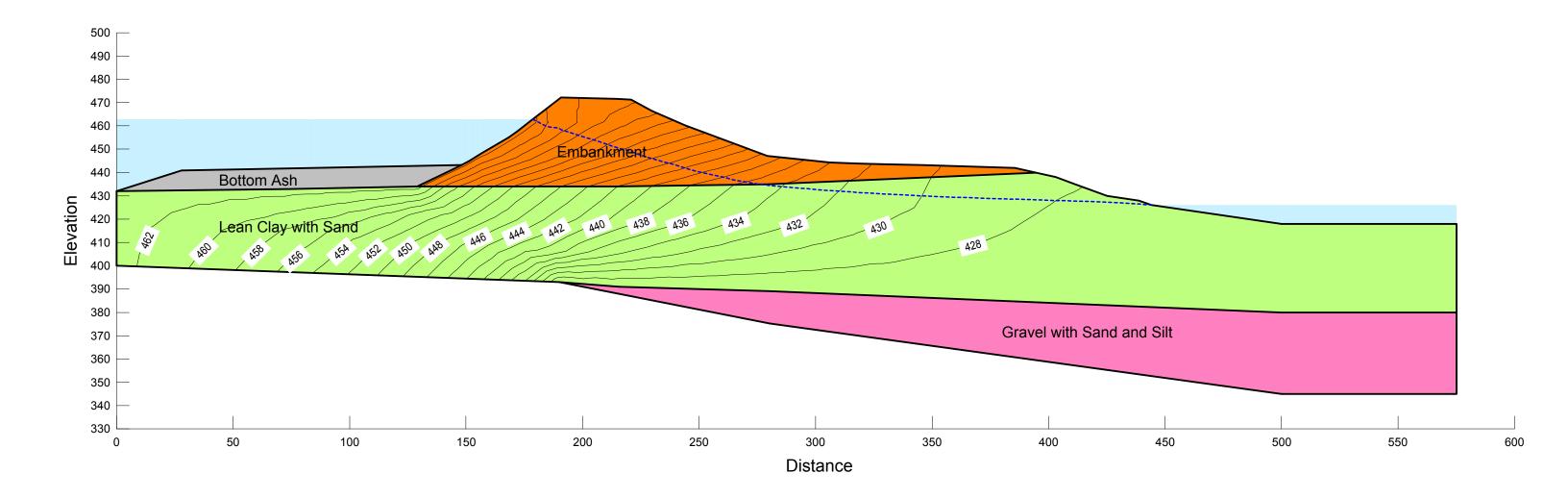


Seepage Analysis Pore Water Pressure Contour (psf)

SEEP Steady State 50% PMF Pool 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Section B-B'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay With Sand (Drained)	2.83e-007	0.1	0.38	0.09
Gravel With Silt And Sand (Drained)	0.00164	0.2	0.23	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

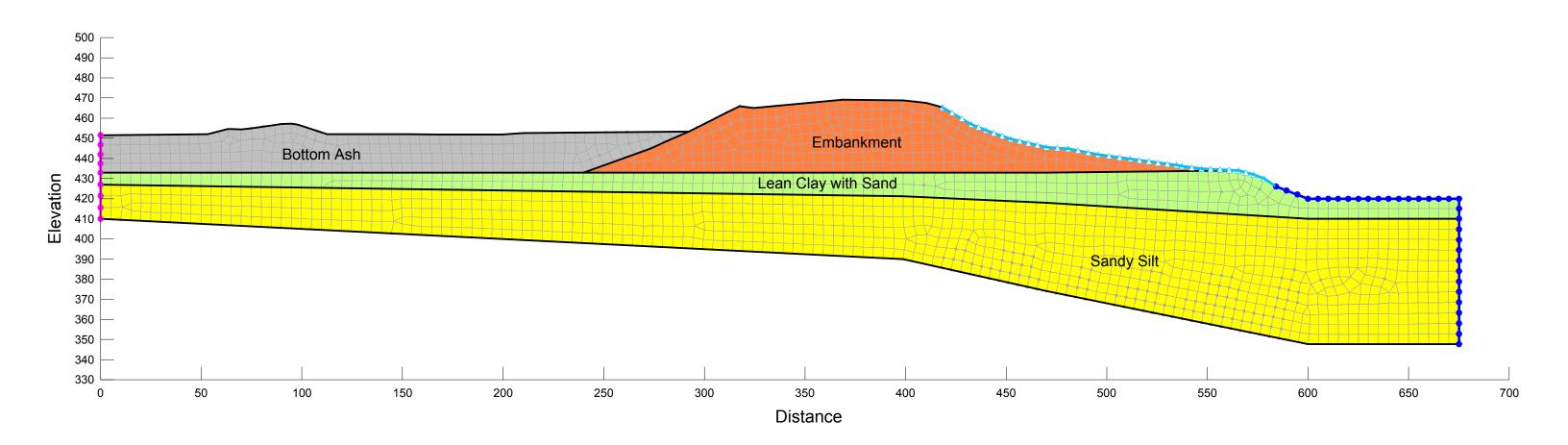


Seepage Analysis Total Head Contour (feet)

SEEP Steady State 50% PMF Pool 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Section B-B'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay With Sand (Drained)	2.83e-007	0.1	0.38	0.09
Gravel With Silt And Sand (Drained)	0.00164	0.2	0.23	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

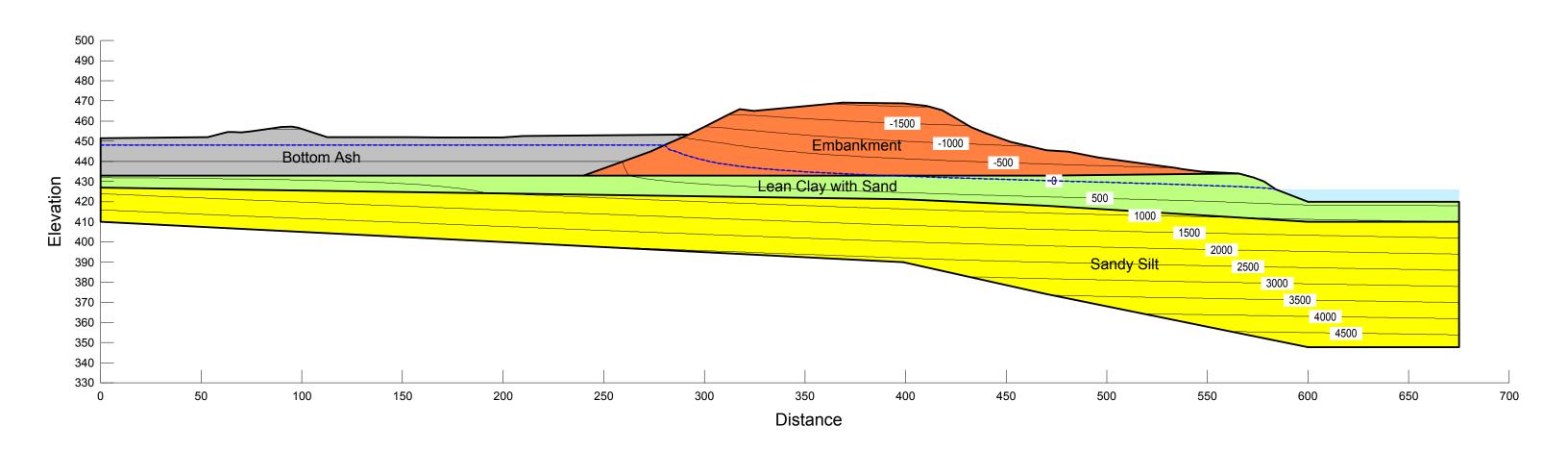


Seepage Analysis Boundary Condition and Mesh

SEEP Steady State Normal Pool Normal Pool Elevation: 448 Feet Drained Static Strengths Section C-C'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay with Sand (Drained)	2.83e-007	0.1	0.41	0.09
Sandy Silt (Drained)	1.64e-005	0.2	0.29	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

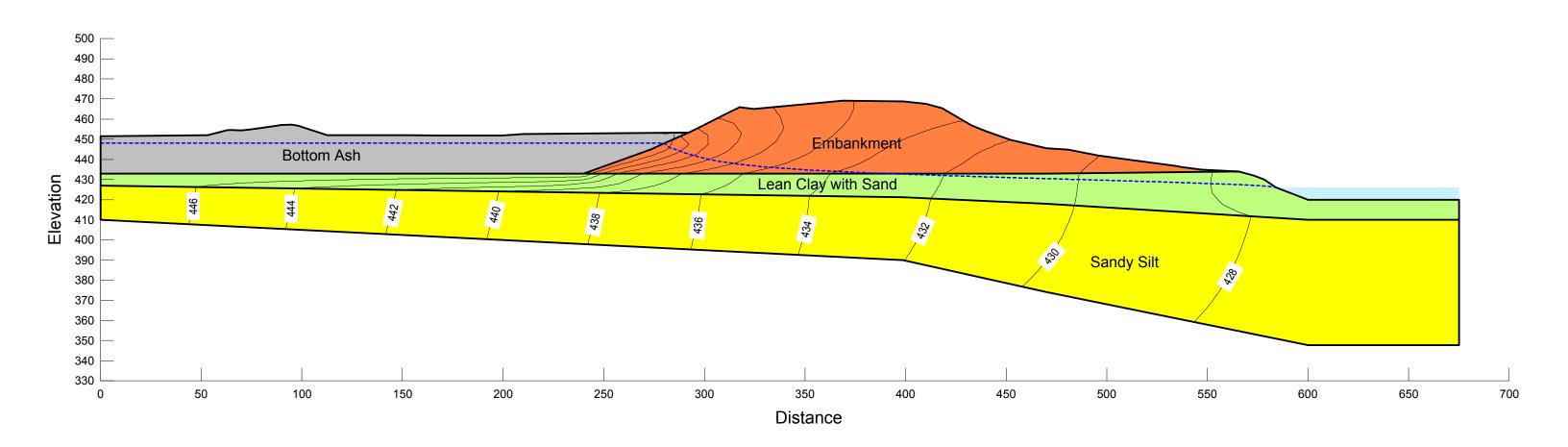


Seepage Analysis Pore Water Pressure Contour (psf)

SEEP Steady State Normal Pool Normal Pool Elevation: 448 Feet Drained Static Strengths Section C-C'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay with Sand (Drained)	2.83e-007	0.1	0.41	0.09
Sandy Silt (Drained)	1.64e-005	0.2	0.29	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

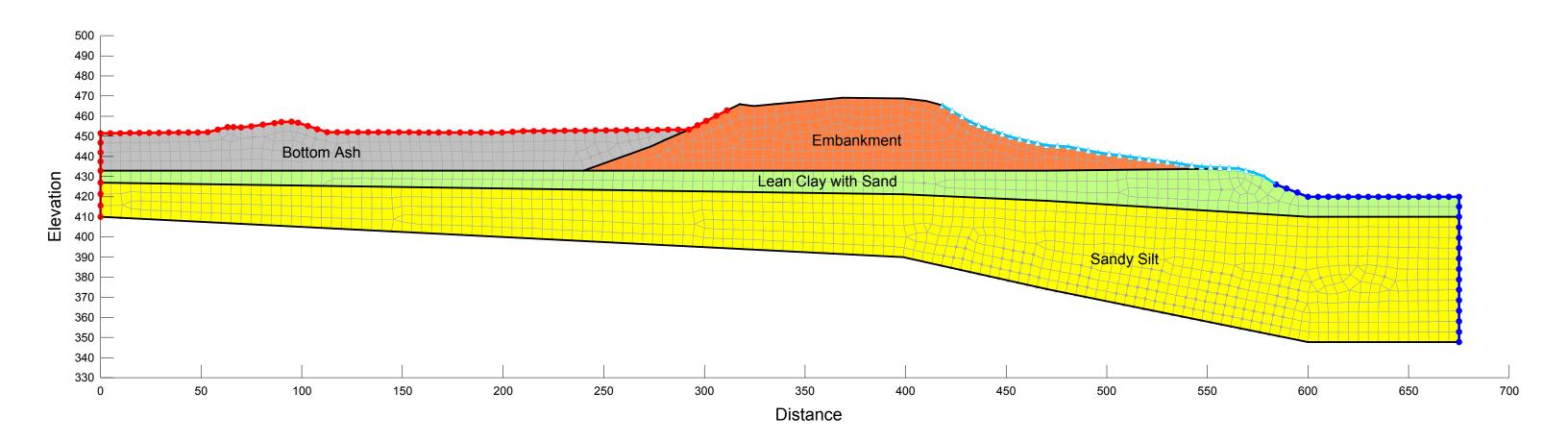


Seepage Analysis Total Head Contour (feet)

SEEP Steady State Normal Pool Normal Pool Elevation: 448 Feet Drained Static Strengths Section C-C'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay with Sand (Drained)	2.83e-007	0.1	0.41	0.09
Sandy Silt (Drained)	1.64e-005	0.2	0.29	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

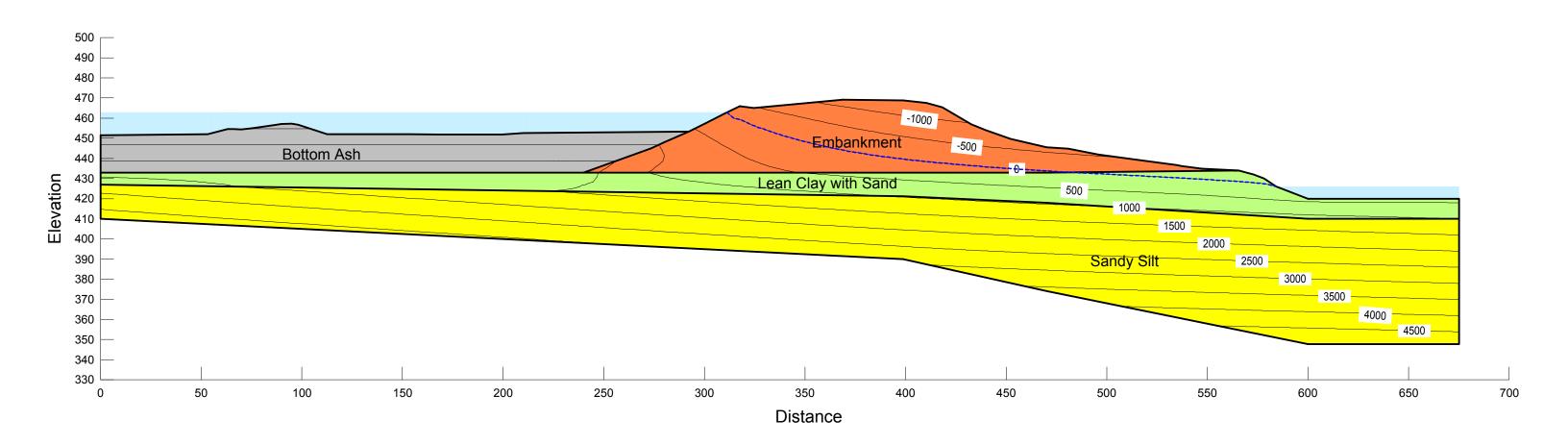


Seepage Analysis Boundary Condition and Mesh

SEEP Steady State 50% PMF Pool 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Section C-C'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay with Sand (Drained)	2.83e-007	0.1	0.41	0.09
Sandy Silt (Drained)	1.64e-005	0.2	0.29	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

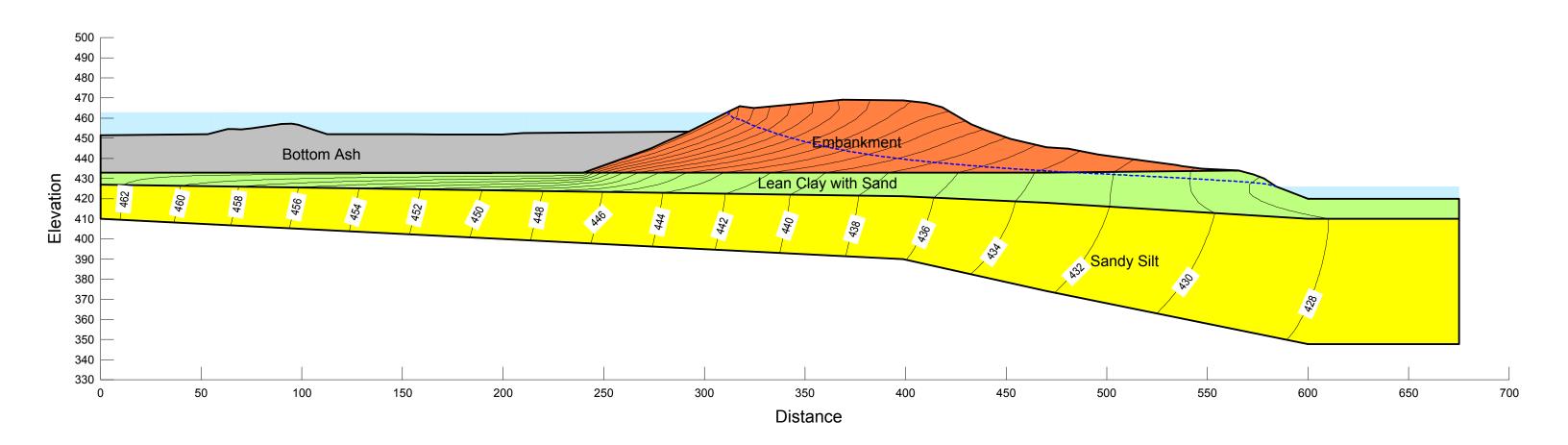


Seepage Analysis Pore Water Pressure Contour (psf)

SEEP Steady State 50% PMF Pool 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Section C-C'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay with Sand (Drained)	2.83e-007	0.1	0.41	0.09
Sandy Silt (Drained)	1.64e-005	0.2	0.29	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027



Seepage Analysis Total Head Contour (feet)

SEEP Steady State 50% PMF Pool 50% PMF Pool Elevation: 462.8 Feet Drained Static Strengths Section C-C'

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

Material	Kh-sat (ft/sec)	Kratio Kv/Kh	Sat. Water Content ft^3/ft^3	Res. Water Content ft^3/ft^3
Embankment (Drained)	4.72e-008	0.1	0.38	0.109
Lean Clay with Sand (Drained)	2.83e-007	0.1	0.41	0.09
Sandy Silt (Drained)	1.64e-005	0.2	0.29	0.01
Bottom Ash (Drained)	0.0115	1	0.3548	0.027

APPENDIX J

PARAMETER DERIVATIONS

BOILER SLAG POND DAM: 2010 PARAMETER DERIVATIONS

WEST BOTTOM ASH DAM GEOTECHNICAL ANALYSIS

CALCULATION SHEET

I. Subsurface Exploration Program Development:

Three cross sections across the dam were analyzed with two borings on each section: On the crest and at the toe.

II. Laboratory Testing Program:

The program was developed based on visual classifications done in the field during subsurface exploration.

- USCS Soil Classification Tests
- CU Triaxial Compression Tests
- Permeability Tests.
- Moisture Density tests.

III. Geotechnical Analysis:

A soil tests summary was developed to select soil parameters to use in the geotechnical analysis. Engineering properties that were not directly tested were determined using typical soil parameter values from NAVFAC DM7-02 Foundations and Earth Structures (Table 1 on Page 39) and the Center For Geotechnical Practice and Research, Performance and Use of the Standard Penetration Test in Geotechnical Engineering Practice report (Figures 34 and 35 on pages 71 and 72 respectively). The two tables are attached at the end of the parameter derivation notes.

Permeability k values that were not tested in the laboratory were selected from typical values provided in the table below and those provided in NAVFAC DM7.02, table 1: Typical Properties of Compacted soils

Soil Type	k _v (cm/s)
Coarse Sand	-1 >10
Fine Sand	-1 -3 10 to 10
Silty Sand	-3 -5 10 to 10
Silt	-5 -7 10 to 10
Clay	-7 <10

Soils from the West Bottom Ash Dam were classified into 5 main soil layers.

The following table shows how pertinent parameters were selected and which sections they were applied to.

Soil name	USCS class	Classification Samples	Shear Strength Parameters	Permeability Parameters	Section
Embankment fill	CL	B-1,(10- 11.5)(12.5-14)	Triaxial Test No 1	Test ID 7A	A/B/C
Lean Clay with Sand	CL	B-2,(32.5-34)(35- 36.5)	Triaxial Test No 2	Average of test ID 48A & 82A	A/B/C
Gravel With Silt and Sand	GW- GM	B-4,(57.5-59)(60- 61.5)	Typical values *	Typical values	A/B
Sand Silt/ Silt with Sand	ML	B-5,(55- 56.5)(57.5-59)	Typical values *	Typical values	O
Bottom Ash		Averaged results from WBAP trench testing.**	Typical values *	Averaged results from WBAP trench testing.	A/B/C

^{*} Typical values as determined from referenced tables.

** Table attached at end of appendix

Soil name	Unit Weight	С	ф	Κ _ν (cm/sec)	K _h /K _v	g	е
Embankment fill	130	165	33	1.44 E- 07	10	2.72 (ST sample)	0.609 (ST sample)
Lean Clay with Sand	119	160	24	8.62 E- 07	10	2.69 (ST sample)	0.700 (ST sample
Gravel With Silt and Sand	130	0	35	1.00 E- 02	5	2.70	0.300
Sand Silt/ Silt with Sand	130	0	30	1.00 E- 04	5	2.70	0.400
Bottom Ash	115	0	28	3.5E-01	1		

1. SEEPAGE ANALYSIS.

Geoslope Seep W analysis was used to analyze the model for Seepage. Field piezometer readings were compared to the model's results. The model was calibrated to approximate field water elevations.

Residual and saturated water contents and coefficients of volume compressibility were assumed for all soil layers based on previous experiences and soils' normal values.

Water elevations used were:

- Existing (normal) water elevation in the pond: 442 feet.
- Maximum possible impounded water elevation (spillway highest grate): 457.7 feet
- Ohio River water elevation 426 feet.

Seepage analysis results were used in the slope stability analysis to model pore water pressures.

2. STABILITY ANALYSIS.

Geoslope Slope W was used for the slope stability analysis.

The Spencer Analysis Method was used.

Slip circle method and siding wedge method were modeled by the circular failure plane and the block specified; the circular failure plane produced lower Factors of Safety.

The peak ground acceleration used for the seismic analysis was obtained from US Geological Survey website. The PGA used is 0.08g (USGS indicates 0.07677g). The method selected to do the seismic analysis was the pseudostatic analysis per the project scope.

Loading conditions:

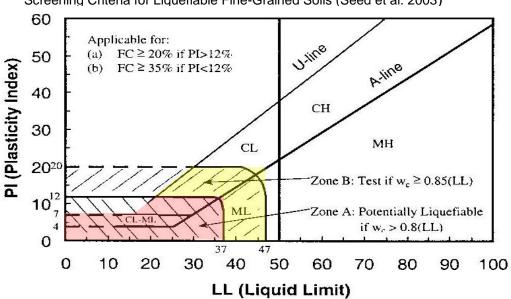
Static Slope Stability Loading Conditions:

- Steady state Seepage normal pool (upstream and downstream slopes): 442 feet
- Steady state seepage maximum pool (upstream and downstream slopes): 457.7
- Rapid drawdown: normal pool steady-state seepage conditions with empty pond and dredged conditions above elevation 433 feet (upstream slope)
- PMF event (upstream and downstream slopes). The flood water was considered as
 a surcharge and the maximum pool steady state pore pressure line was used, as
 the water elevation selected for the PMF event is the result of a flood occurring
 while the dam had the maximum water pool. PMF event water elevation in the
 pond is: 468.4 feet.

Seismic Slope Stability Loading Conditions:

- Steady state seepage normal pool (upstream and downstream slopes): 442 feet
- Steady state seepage maximum pool (upstream and downstream slopes): 457.7 feet

3. LIQUEFACTION ANALYSIS.


Research and methodology:

- Earthquake intensity: USGS website used to determine the Peak Ground Acceleration and earthquake intensity for an earthquake event of a mean return period of 2,475 years. PGA = 0.07677g, the value used in the analysis is 0.08g and $M_L = 7.7$.
- Groundwater table: Normal (current) steady state water elevations were considered as the groundwater elevation. Unsaturated soil located above the groundwater table will not liquefy.

Soil Type:

The dam soil materials, being constructed of engineered fill located above the groundwater table, are not considered liquefiable.

Cohesionless materials are considered liquefiable. The majority of cohesive soils will not liquefy. Cohesive soils susceptible to liquefaction should fall in either zone A or zone B of the following chart.

Screening Criteria for Liquefiable Fine-Grained Soils (Seed et al. 2003)

Soil relative density (Dr): Soils in a loose relative density state are susceptible to liquefaction. Soils with an SPT-N value of 30 or higher were considered not liquefiable.

Liquefaction Assessment

To assess liquefaction potential for the WBAD, the boring logs from the geotechnical borings and laboratory test data from Shelby tubes and SPT samples were used. The boring logs include the SPT blow counts and soil lithologic descriptions with depth.

Soil characteristics (grain size, plasticity, unit weight, moisture content) from SPT and Shelby tube samples obtained from the geotechnical borings were used in the liquefaction assessment.

Method Used: Simplified Method based on using correlations to blow counts from Standard Penetration Tests (SPTs) as set forth in Youd et al (2001) and discussed in NRC (1985).

The Simplified Method requires estimating the Cyclic Stress Ratio (CSR) and Cyclic Resistance Ratio (CRR) of the soil. The CRR can be estimated using information from SPT tests, corrected to account for various effects. To use the Simplified Method, the SPT N value is normalized to an overburden pressure of approximately 100 kiloPascals (kPa) and a hammer energy ratio of 60% and procedural effects (rod length, sample configuration and borehole diameter).

The $(N_1)_{60}$ may also be corrected for the percent of fines using the relationship:

$$(N_1)_{60cs} = \alpha + \beta (N_1)_{60}$$

It is important to note that the fines correction is an approximation and is only valid for nonplastic fines and with a fines content between 0 and 35%. This correction factor, although widely used, is considered as a rough approximation only.

Once the corrected value for $(N_1)_{60}$ is found, the CRR is calculated as:

$$CRR_{7.5} = \frac{1}{34 - (N_1)_{60}} + \frac{(N_1)_{60}}{135} + \frac{50}{[10*(N_1)_{60} + 45]^2} - \frac{1}{200}$$

Note that the value calculated is the CRR normalized to a 7.5 magnitude earthquake, hence the $CRR_{7.5}$ notation. When evaluating the liquefaction potential of soil, the $CRR_{7.5}$ must be corrected to the magnitude earthquake of interest.

The CSR is independent of soil properties and may be approximated using the equation:

$$CSR = 0.65 \left(\frac{a_{\text{max}}}{g}\right) \left(\frac{\sigma_{v}}{\sigma'_{v}}\right) r_{d}$$

where:

 r_{d} is a stress reduction coefficient.

Liquefaction potential for a soil unit is evaluated by dividing CRR_{7.5} by CSR and then correcting to the magnitude earthquake of interest, as:

$$FS = \frac{CRR_{7.5}}{CSR} * MSF$$

Field experience has shown that the Simplified Method is somewhat conservative; so many designers consider FS values close to unity as an indication of no liquefaction.

<u>B-1</u>

Elevation	Depth	Soil class	N	Remarks
470.2	3.25	CL	11	Not liquefiable.
467.7	5.75	CL	10	
462.7	10.75	CL	10	Embankment and
460.2	13.25	CL	7	located above
455.2	18.25	CL	15	ground water
452.7	20.75	CL	15	
450.2	23.25	CL	14	
447.7	25.75	CL	8	
445.2	28.25	CL	12	
442.7	30.75	CL	11	
440.2	33.25	CL	9	
437.7	35.75	CL	10	
435.2	38.25	CL	6	
432.7	40.75	CL	5	
427.7	45.75	CL	2	Evaluated for
425.2	48.25	CL	3	liquefaction
422.7	50.75	CL	4	
420.2	53.25	CL	2	
417.7	55.75	CL	4	
415.2	58.25	CL	4	
412.7	60.75	CL	5	
410.2	63.25	CL	6	
407.7	65.75	CL	7	

<u>B-2</u>

Elevation	Depth	Soil class	N-field	Remarks
440.8	3.25	CL	19	Not liquefiable
438.3	5.75	CL	7	as layer is
435.8	8.25	CL	7	above ground
430.8	13.25	CL	5	water
428.3	15.75	CL	4	
425.8	18.25	CL	2	Evaluated for
423.3	20.75	CL	4	liquefaction

418.3	25.75	CL	4	
415.8	28.25	CL	9	
413.3	30.75	CL	6	
410.8	33.25	CL	6	
408.3	35.75	CL	5	
405.8	38.25	CL	4	
403.3	40.75	CL	6	
398.3	45.75	CL	2	
393.3	50.75	GW - GM	50	Not liquefiable

<u>B-3</u>

Elevation	Depth	Soil class	N-field	Remarks
468.4	3.25	CL	11	Not liquefiable.
465.9	5.75	CL	8	
463.4	8.25	CL	10	Embankment
458.4	13.25	CL	9	and located
455.9	15.75	CL	10	above ground
453.4	18.25	CL	12	water
448.4	23.25	CL	12	
445.9	25.75	CL	9	
443.4	28.25	CL	15	
440.9	30.75	CL	10	
438.4	33.25	CL	17	
435.9	35.75	CL	16	
433.4	38.25	CL	18	
430.9	40.75	CL	4	Evaluated for
428.4	43.25	CL	4	liquefaction
425.9	45.75	CL	6	
420.9	50.75	CL	4	
418.4	53.25	CL	2	
415.9	55.75	CL	5	
413.4	58.25	CL	2	
410.9	60.75	CL	8	
408.4	63.25	CL	6	
405.9	65.75	CL	7	
403.4	68.25	CL	9	
400.9	70.75	CL	8	

<u>B-4</u>

Elevation	Depth	Soil class	N-field	Remarks
443.5	3.25	CL	16	Not liquefiable
441.0	5.75	CL	15	as located
436.0	10.75	CL	11	above ground
433.5	13.25	CL	7	water
431.0	15.75	CL	5	

426.0	20.75	CL	4	Evaluated for
424.5	22.25	CL	5	liquefaction
421.0	25.75	CL	6	
418.5	28.25	CL	5	
416.0	30.75	CL	3	
413.5	33.25	CL	4	
411.0	35.75	CL	9	
406.0	40.75	CL	4	
403.5	43.25	CL	5	
401.0	45.75	CL	8	
398.5	48.25	CL	6	
396.0	50.75	CL	7	
393.5	53.25	CL	5	
391.0	55.75	CL	7	
388.5	58.25	GW - GM	39	Not liquefiable
386.0	60.75	GW - GM	46	as layer is very
381.5	65.25	GW - GM	50	dense
376.0	70.75	GW - GM	52	

<u>B-5</u>

Elevation	Depth	Soil class	N-field	Remarks
465.5	3.25	CL	19	Not liquefiable.
463.0	5.75	CL	9	
458.0	10.75	CL	15	Embankment
455.5	13.25	CL	10	and located
453.0	15.75	CL	7	above ground
450.5	18.25	CL	16	water
448.0	20.75	CL	7	
443.0	25.75	CL	8	
440.5	28.25	CL	7	
438.0	30.75	CL	12	
435.5	33.25	CL	8	
433.0	35.75	CL	16	
430.5	38.25	CL	6	
428.0	40.75	CL	3	Evaluated for
423.0	45.75	CL	4	liquefaction
420.5	48.25	ML	4	Evaluated for
418.0	50.75	ML	6	liquefaction
415.5	53.25	ML	2	
413.0	55.75	ML	4	
410.5	58.25	ML	5	
408.0	60.75	ML	7	
405.5	63.25	ML	9	
403.0	65.75	ML	11	
400.5	68.25	ML	9	
398.0	70.75	ML	13	

<u>B-6</u>

Elevation	Depth	Soil class	N-field	Remarks
442.3	3.25	CL	8	Not liquefiable as layer is above ground water
439.8	5.75	CL	10	
434.8	10.75	CL	18	
432.3	13.25	CL	4	
429.8	15.75	CL	3	
424.8	20.75	CL	1	Evaluated for liquefaction
422.3	23.25	CL	2	
419.8	25.75	CL	4	
417.3	28.25	ML	5	Evaluated for liquefaction
414.8	30.75	ML	3	
412.3	33.25	ML	3	
409.8	35.75	ML	1	
407.3	38.25	ML	1	
402.3	43.25	ML	2	
399.8	45.75	ML	1	
397.3	48.25	ML	1	
394.8	50.75	ML	5	
392.3	53.25	ML	11	
389.8	55.75	ML	4	
387.3	58.25	ML	9	
384.8	60.75	ML	11	
379.8	65.75	ML	9	
374.8	70.75	ML	10	

7.2-39

TABLE 1
Typical Properties of Compacted Soils

					il Value of pression	Typical Strength Characteristics						
Group Symbol	Soil Type	Range of Heximum Dry Unit Weight, pcf	Range of Optimes Moisture, Percent		At 3.6 tmf (50 pmf) of Original	Cohesion (as com- pacted) paf	Cohesion (saturated) psf	(Effective Stress Envelope Degrees)	Tan Ø	Typical Coefficient of Permea- bility ft,/min,	Range of CBR Values	Range of Subgrade Modulus k 1bs/cu in.
C¥i	Well graded cleam gravals, gravel-sand mixtures.	125 - 135	11 - 8	0,3	0.6	0	0	>38	>0.79	5 π 10 ⁻²	40 ~ 80	300 - 500
GP	Poorly graded clean gravels, gravel-sand mix	115 - 125	14 - 11	0.4	0,9	o	0	>37	>0.74	10+1	30 ~ 60	250 - 400
GRI	Silty gravels, poorly graded gravel-sand-silt.	120 - 135	13 - 8	Q.5	1•1	*****	*****	>34	>0.67	>10 -6	20 - 60	100 - 400
GC C	Clayey gravels, poorly graded gravel-sand-clay.	115 - 130	14 - 9	0.7	1,6			>31	>0.60	>10 ⁻⁷	20 - 40	1 00 - 300
ŚW	Well graded clean mends, gravelly egods.	110 - 130	16 - 9	0_6	1.2	0	0	38	0.79	>10=3	20 - 40	200 - 300
SP	Footly graded clean sands, sand-gravel mix.	100 - 320	21 - 12	0.9	1.4	0	Đ	37	0.74	>10-3	10 - 40	200 ~ 300
BM	Silty enods, poorly graded send-wilt wix.	110 - 125	16 - 11	0,8	1.6	1050	420	34	0.67	5 x >10~5	10 - 40	100 - 300
SH-SC	Sand-silt clay mix with slightly plastic fines.	110 - 130	15 - 11	0.8	1.4	1050	300	33	0.66	2 ≰>10−6	5 - 30	100 - 300
80	Clayey sands, poorly graded sand-clay-mix.	105 + 125	19 - 11	1.1	2.2	1550	230	31	0,60	5 x >10 ⁻⁷	5 - 20	100 - 300
ЮL	Inorganic silts and clayey silts.	95 - 120	24 - 12	0,9	1.7	1400	190	32	0.62	>10-5	15 or less	100 - 200
MIL-CL	Mixture of inorganic ailt and clay.	100 - 120	22 - 12	1.0	2.2	1350	460	3z	D. 62	5 x >10 ⁻⁷	*****	
c1,	Inorganic clays of low to medium plasticity.	95 - 120	24 - 12	1.3	2.5	1800	270	28	0.54	>10-7	15 or less	50 - 200
OL	Organic silts and silt- clays, low plasticity.	90 ~ 100	33 - 21	••••	.,					••••	5 or less	50 - 100
MOL	Inorganic clayey siltm, elastic milts.	70 - 95	40 - 24	2.0	3.8	1500	420	25	0.47	5 x >10 ⁻⁷	10 or less	50 - 100
CHE	Inorganic clays of high plasticity	75 - 105	36 - 19	2,6	3.9	2150	230	19	0,35	>10-7	15 or les*	50 - 150
OH	Organic clays and silty clays	65 - 100	45 - 21								5 or less	25 - 100

Notes:

- All properties are for condition of "Standard Proctor" maximum density, except values of k and CSR which are for "modified Proctor" maximum density.
- Typical stength characteristics are for effective strength envelopes and are obtained from USSR data.
- Compression values are for vertical leading with complete lateral confinement.
- (>) indicates that typical property is greater than the value shown.
 (...) indicates insufficient data available for an estimate.

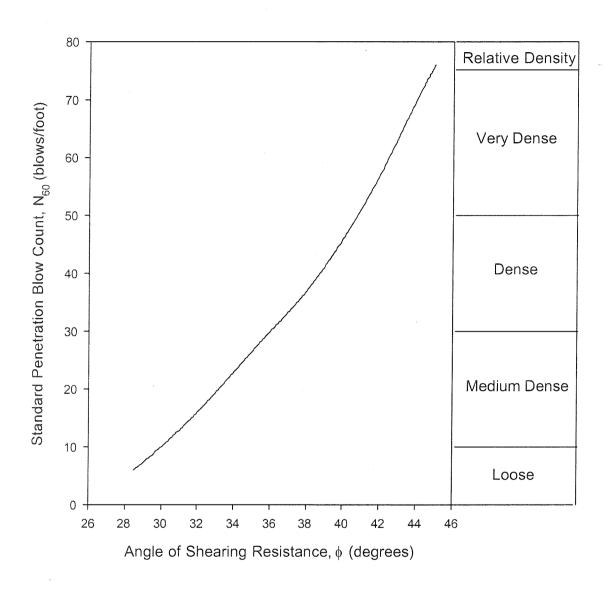


Figure 35. Estimation of the angle of shearing resistance of granular soils from standard penetration test results (Originally from Peck et al., 1974, modified by Carter and Bentley, 1991).

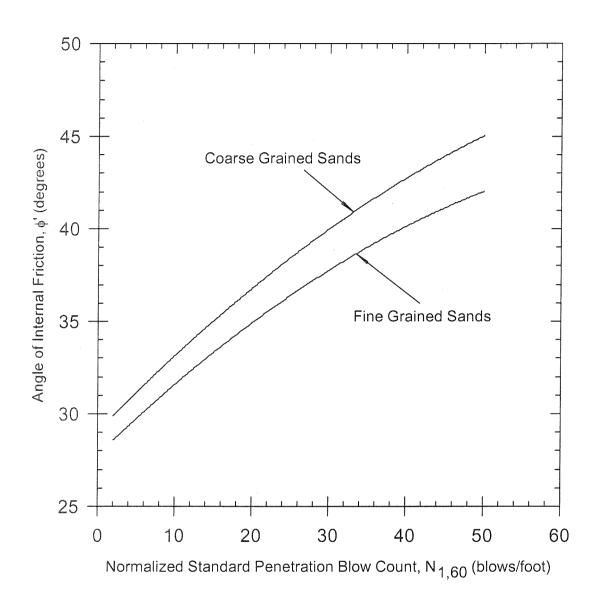


Figure 34. Empirical correlation between friction angle of sands and normalized standard penetration blow count (after Terzaghi et al., 1996)

ASTM D 422, C 136

rench Testing (Bottom Ash Testing)								ASTM D 42	22, 6 136												
							•		-	-, .							% Gravel	% Sand	% Fines		Fines
	ω (%)	- 10 ()			Cu									0.425	0.075						Classification
	6.2				8.47									11.8	1.8				1.7		
	5.6						100.0								0.8			72.1	0.8		
	7.5						100.0								2.2			83.8	1.9		
	5.9						100.0								1.3				1.2		
	6.0						100.0								1.2				1.1		
	7.1														2.2	0.0	18.4	79.3			
	23.1		0.1599				100.0		100.0						9.8	0.0	5.3	84.9	10.0		
	8.7		0.8464				100.0		100.0	99.5		84.4		17.1	2.1	0.0		82.4	2.1		
	5.4	0.3714	1.4341	3.9659	10.68	1.40	100.0	100.0	93.7	89.1	77.9	66.1	36.5	11.3	1.0	0.0	33.9	65.1	1.0	2.9E-01	
	4.4											63.1			1.4			61.7	1.4		
Well Graded Sand (SW) with Gravel	4.4	0.3771	1.1624	3.2364	8.58	1.11	100.0	100.0	100.0	96.3	87.8	75.2	41.0	10.6	1.8	0.0	24.8	73.3	1.8	3.9E-01	
Poorly Graded Sand (SP) with Gravel	2.7	0.4552	1.1566	3.1130	6.84	0.94	100.0	100.0	97.9	96.4	86.8	76.9	42.4	8.5	1.4	0.0	23.1	75.5	1.4	4.7E-01	
	12.5			2.4777								84.1			3.7				3.7		
Well Graded Sand (SW-SC) with Clay and Gravel	14.0	0.1021	0.9001	3.1464	30.82	2.52	100.0	90.3	90.3		84.2	75.4		20.0	7.8	0.0			7.8	2.5E-01	CH
	7.7	0.1110	0.6950	2.4690	22.24	1.76	100.0	100.0	100.0		93.7	83.3		21.7	6.6	0.0			6.6		
	8.4	0.0934			25.10	1.99	100.0		100.0		95.3	86.1	54.9	22.4	8.4	0.0			8.4		
	6.8	0.1413	0.7713	2.6062	18.44	1.62	100.0		100.0		93.1	81.3	51.6	20.1	6.1	0.0			6.1		
Silty Sand (SM), with Gravel	8.5						100.0								33.3					8.6E-02	
	8.2	0.1425	0.7675	2.6682	18.72	1.55	100.0	100.0	100.0	98.5	90.6	81.2		19.8	6.1	0.0	18.8	75.1	6.1		
Silty Sand (SM), gray	13.3						100.0	100.0	100.0	100.0	94.3	87.5		30.9	14.3	0.0	12.5	73.2	14.3	1.9E-02	
	16.8								100.0			89.5		34.4	17.1	0.0	10.5		17.1	1.8E-02	
Well Graded Sand (SW-SM) with Silt and Gravel	5.8			2.9060	18.73	2.24	100.0	100.0	100.0	97.1	93.3	84.0	43.5	18.6	5.6	0.0	16.0	78.4	5.6		ML
Well Graded Sand (SW-SM) with Silt and Gravel	6.8			2.6016	24.71	1.42	100.0	100.0	100.0	97.0	89.4	81.0	52.3	23.5	6.7	0.0	19.0	74.3	6.7		ML
Well Graded Sand (SW-SM) with Silt	4.5	0.1541	0.8266	2.6141	16.96	1.70	100.0	100.0	100.0	97.7	92.9	86.8		19.4	5.3	0.0	13.2	81.5	5.3		ML
Well Graded Sand (SW-SM) with Silt and Gravel	6.8	0.0972	0.5461	2.4056	24.74	1.28	100.0	100.0	98.4	96.7	90.2	81.0	54.5	26.1	7.2	0.0	19.0	73.8	7.2		ML
max		0.5766	1.4565	4.3012	30.82	2.52	100.0	100.0	100.0	100.0	98.4	94.7	80.6	56.1	33.3	0.0	36.9	84.9	33.3	1.1E+00	
min		0.0757	0.1599	0.5429	5.66	0.62	100.0	90.3	90.3	87.9	76.3	63.1	36.3	5.5	0.8	0.0	5.3	43.1	0.8	1.8E-02	
average		0.2605	0.9472	2.8233	14.50	1.40	100.0	99.6	98.4	96.5	90.0	80.5	49.2	19.8	6.2	0.0	19.5	74.3	6.2	3.5E-01	
	Well Graded Sand (SW) with Gravel Poorly Graded Sand (SP) with Gravel Well Graded Sand (SP) with Gravel Well Graded Sand (SP) with Gravel Poorly Graded Sand (SP) with Gravel Poorly Graded Sand (SP) with Gravel Well Graded Sand (SP) with Gravel Well Graded Sand (SP) of Gravel Well Graded Sand (SP) with Gravel Well Graded Sand (SW) with Gravel Well Graded Sand (SW-SC) with Clay and Gravel Silty Sand (SM), with Gravel Silty Sand (SM), gray Silty Sand (SM), gray Well Graded Sand (SW-SM) with Silt and Gravel	Well Graded Sand (SW) with Gravel 5.6 Well Graded Sand (SP) with Gravel 5.6 Well Graded Sand (SP) with Gravel 5.9 Poorly Graded Sand (SP) with Gravel 5.9 Poorly Graded Sand (SP) with Gravel 5.9 Poorly Graded Sand (SP) with Gravel 6.0 Well Graded Sand (SP) with Gravel 7.1 Poorly Graded Sand (SP-SC) with Clay 23.1 Well Graded Sand (SP-SC) with Clay 23.1 Well Graded Sand (SW-W) with Gravel 5.4 Well Graded Sand (SW) with Gravel 4.4 Well Graded Sand (SW) with Gravel 4.4 Well Graded Sand (SW) with Gravel 2.7 Well Graded Sand (SW) with Gravel 4.5 Well Graded Sand (SW) with Gravel 2.7 Well Graded Sand (SW) with Gravel 2.7 Well Graded Sand (SW-SC) with Clay and Gravel 14.0 Road Sand (SW-SC) 8.2 Silty Sand (SM), with Gravel 8.5 Silty Sand (SM), gray 13.3 Silty Sand (SM), gray 16.8 Well Graded Sand (SW-SM) with Silt and Gravel 6.8 Well Graded Sand (SW-SM) with Silt and Gravel 6.8 Well Graded Sand (SW-SM) with Silt and Gravel 6.8 Well Graded Sand (SW-SM) with Silt and Gravel 6.8 Well Graded Sand (SW-SM) with Silt and Gravel 6.8 Well Graded Sand (SW-SM) with Silt and Gravel 6.8 Well Graded Sand (SW-SM) with Silt and Gravel 6.8 Well Graded Sand (SW-SM) with Silt and Gravel 6.8 Well Graded Sand (SW-SM) with Silt and Gravel 6.8 Well Graded Sand (SW-SM) with Silt and Gravel 6.8	Classification	Poorly Graded Sand (SW) with Gravel Poorly Graded Sand (SW) with Gravel Sand (SP) with Gravel Sand (SP-SC) with Clay Sand Sand (SP-SC) with Gravel Sand Sand Sand (SP-SC) with Gravel Sand Sand Sand (SP-SC) Sand Sand Gravel Sand Sand (SP-SC) Sand Sand Gravel Sand Sand (SP-SM) with Silt and Gravel Sand Sand (SP-SM) with Silt and Gravel Sand Sand (SP-SM) with Silt and Gravel Sand Sand SW-SM) with Silt and Gravel Sand SW-SM) with Silt and Gravel Sand SW-SM) with Silt and Gravel Sand SM-SM) with Silt and Gravel Sand SW-SM) with Sil	Classification	Sieve Classification O (%) D ₁₀ (mm) D ₂₀ (mm) D ₂₀ (mm) Cu Cc 75 37.5 25.0 19.0 9.5	Sieve Size (% Pa as	Classification Clas	No. No.	Classification O(N) D ₁₀ (mm) D ₂₀	No. Classification No. No.	New Crase Classification New New	Classification No. No.	Classification O(N) D ₁₈ (mm) D ₁₈	Signe Sign						

FLY ASH DAM GEOTECHNICAL ANALYSIS

PARAMETER DERIVATION

I. Subsurface Exploration Program Development:

The scope determined two sections across the dam. Two borings will be drilled on each section, on the crest and at the toe, only Sheby tube samples were collected that will be used to supplement available historic borings data in the development of the soil profile.

II. Laboratory Testing Program:

The program was developed to provide additional soil data to available historic data.

- USCS Soil Classification Tests.
- Triaxial tests.
- Permeability tests
- Moisture-density tests.

III. Geotechnical Analysis:

A soil tests summary was developed to select soil parameters to use in the geotechnical analysis. Engineering properties that were not directly tested were determined using typical soil parameter values from NAVFAC DM7-02 Foundations and Earth Structures (Table 1 on Page 39) and the Center For Geotechnical Practice and Research, Performance and Use of the Standard Penetration Test in Geotechnical Engineering Practice report (Figures 34 and 35 on pages 72 and 77 respectively). The two tables are attached at the end of the parameter derivation notes.

Permeability k values that were not tested in the laboratory were selected from typical values provided in the table below and those provided in NAVFAC DM7.02, table 1: Typical Properties of Compacted soils

Soil Type	k _v (cm/s)
Coarse Sand	-1 >10
Fine Sand	-1 -3 10 to 10
Silty Sand	-3 -5 10 to 10
Silt	-5 -7 10 to 10
Clay	-7 <10

Historic boring and graphic logs were used to develop the dam's soil horizons for soil layers on which soil sampling was not done.

Soils from the Flay Ash Dam were classified into 7 main soil layers.

The following table shows how pertinent parameters were selected and which sections they were applied to.

Soil name	USGS class	Classification Samples	Shear results sample	Permeability k-value sample	Section
Embankment fill	CL	B-9 sample (20.2' – 20.8')	Average Triaxial Test B-7 & B-9	Average K tests B-7 & B-9	D/E
Lean Clay With Sand	CL	B-8 sample (25.5' – 25.8')	Average Triaxial Test B-8 & B-10	Permeability test B-8	D/E
Clayey Sand and Gravel	GC	Fly Ash Dam Raising report logs	Typical values *	Typical values *	D
Sandy Silts	ML	Fly Ash Dam Raising report logs	Typical values *	Typical values *	D
Silty Clay With Sand	CL-ML	B-10 sample (16.2' – 16.8')	Typical values *	Permeability test B-10	E
Silty Sand	SM	B-10 sample (14.2' – 14.8')	Typical values *	Typical values *	D/E
Fly Ash	NA	NA	Typical values *	Hydrogeologic study report	D/E

^{*} Typical values as determined from referenced tables.

Soil name	Unit Weight	С	ф	kv (cm/sec)	Typical kh/kv	g	е
Embankment fill	129	198	27.5	7.30E-08	10	2.63 B-7 (27.2- 27.8)	0.609 (ST sample)
Lean Clay With Sand	127	205.92	28	3.40E-08	10	2.65 B-8 (29.7- 30.3)	0.700 (ST sample)
Clayey Sand and Gravel	130	0	35	1.00E-02	10	2.70	0.5
Sandy Silts	125	0	30	1.00E-04	5	2.65 B-8 (29.7- 30.3)	0.4
Silty Clay With Sand	118	151.92	34.1	1.40E-07	10	2.68 B-10 (14.2- 14.8)	0.43

Silty Sand	94	0	30	1.00E-04	5	2.66 B-10 (16.2- 16.8)	0.4
Fly Ash	115	0	25	4.75E-04	50	NA	NA

1. SEEPAGE ANALYSIS.

Geoslope Seep W analysis was used to analyze the model for seepage. Historic Field piezometer readings (Hydrogeologic Study Report, Clifty Creek Coal Ash Landfill, AGES. November 2006) were compared to the model's results. The model results were inconsistent with available piezometer readings. This was due to a lack of enough soil property data.

Water elevations used were:

- Existing (normal) water elevation in the pond: 485 feet.
- Ohio River water elevation 426 feet.

Seepage analysis results were not used in slope stability analyses.

2. STABILITY ANALYSIS.

Geoslope Slope W was used for the slope stability analysis.

The Spencer Analysis Method was used.

Slip circle method and siding wedge method were modeled by the circular failure plane and the block specified; the circular failure plane produced lower Factors of Safety.

The peak ground acceleration used for the seismic analysis was obtained from US Geological Survey website. The PGA used is 0.08g. The method selected to do the seismic analysis was the pseudostatic analysis per the project scope.

Loading conditions:

During a period from 2004 to 2006, groundwater readings from different piezometers and wells across the dam and toe area were taken. The results of these readings provide were used for steady state analysis. (Hydrogeologic Study Report, Clifty Creek Coal Ash Landfill, AGES. November 2006)

Static Slope Stability Loading Conditions:

- Steady state Seepage normal pool (upstream and downstream slopes): 485 feet
- PMF event (upstream and downstream slopes). The flood water was considered as a surcharge above the water pool for steady state. PMF event water elevation in the pond: 501.4 feet.

Seismic Slope Stability Loading Conditions:

Steady state seepage normal pool (upstream and downstream slopes): 485 feet.

3. LIQUEFACTION ANALYSIS.

Research and methodology:

- Earthquake intensity: USGS website used to determine the Peak Ground Acceleration and earthquake intensity for an earthquake event of a mean return period of 2,475 years. PGA = 0.07677g (used 0.08g) and $M_L = 7.7$.
- Groundwater elevation date from 2004 through 2006 provide a steady state water elevation through the dam and the foundation soil materials. Unsaturated soil located above the groundwater table will not liquefy.
- Soil Type:

The dam soil materials, being constructed of engineered fill are not considered liquefiable.

Cohesionless materials are considered liquefiable. The majority of cohesive soils will not liquefy, cohesive soils susceptible to liquefy should have an liquid limit less than 37 and the water content of the soil must be greater than about 85% of the liquid limit.

Due to the absence of USCS classification laboratory results, cohesive foundation materials were considered potentially liquefiable and Factors of Safety against liquefaction were calculated.

 Soil relative density (Dr): Soils in a loose relative density state are susceptible to liquefaction. Soils with an SPT-N value of 30 or higher were considered not liquefiable.

Liquefaction Assessment

Data from nine historical borings (SI-1, SS1-1, SS2-1, SS2-4, SS3-1, SS3-4, SS4-1, SS4-4, and SS5-1) were used to assess liquefaction potential. These borings were drilled in 1984 as part of the AEP Fly Ash Dam Raising Feasibility Project (1985). Soil characteristics included on the borings include the visually-estimated soil classifications per the USCS and SPT N-values.

In order to analyze the dam and foundation materials against liquefaction, it was necessary to assume the percent fines, or percent silt and clay, for many of the soils due to lack of particle size distribution data for the historic borings. Correlating current laboratory classification results with historic logs was done and where data was not available, typical values were assumed based on the visual USCS classifications on the historical boring logs.

Method Used: Simplified Method based on using correlations to blow counts from Standard Penetration Tests (SPTs) as set forth in Youd et al (2001) and discussed in NRC (1985).

The Simplified Method requires estimating the Cyclic Stress Ratio (CSR) and Cyclic Resistance Ratio (CRR) of the soil. The CRR can be estimated using information from SPT tests, corrected to account for various effects. To use the Simplified Method, the SPT N value is normalized to an overburden pressure of approximately 100 kiloPascals (kPa) and a hammer energy ratio of 60% and procedural effects (rod length, sample configuration and borehole diameter).

The $(N_1)_{60}$ may also be corrected for the percent of fines using the relationship:

$$(N_1)_{60cs} = \alpha + \beta (N_1)_{60}$$

It is important to note that the fines correction is an approximation and is only valid for nonplastic fines and with a fines content between 0 and 35%. This correction factor, although widely used, is considered as a rough approximation only.

Once the corrected value for $(N_1)_{60}$ is found, the CRR is calculated as:

$$CRR_{7.5} = \frac{1}{34 - (N_1)_{60}} + \frac{(N_1)_{60}}{135} + \frac{50}{[10*(N_1)_{60} + 45]^2} - \frac{1}{200}$$

Note that the value calculated is the CRR normalized to a 7.5 magnitude earthquake, hence the CRR_{7.5} notation. When evaluating the liquefaction potential of soil, the CRR_{7.5} must be corrected to the magnitude earthquake of interest.

The CSR is independent of soil properties and may be approximated using the equation:

$$CSR = 0.65 \left(\frac{a_{\text{max}}}{g}\right) \left(\frac{\sigma_{v}}{\sigma'_{v}}\right) r_{d}$$

where:

 $a_{\mbox{\scriptsize max}}$ is the maximum ground acceleration.

g is the acceleration of gravity.

 σ_v is the total vertical stress.

 σ_v is the effective vertical stress.

r_d is a stress reduction coefficient.

Liquefaction potential for a soil unit is evaluated by dividing CRR_{7.5} by CSR and then correcting to the magnitude earthquake of interest, as:

$$FS = \frac{CRR_{7.5}}{CSR} * MSF$$

Field experience has shown that the Simplified Method is somewhat conservative; so many designers consider FS values close to unity as an indication of no liquefaction.

<u>SI-1</u>

Elevation	Depth	Soil class	N	Remarks
452.8	3.75	SC	16	Not liquefiable,
447.8	8.75	SC	13	above ground
442.8	13.75	ML	8	water.
437.8	18.75	ML	5	Evaluated for
432.8	23.75	ML	9	liquefaction
427.8	28.75	SC	23	
422.8	33.75	SC	24	
417.8	38.75	SM	22	
412.8	43.75	ML	18	
407.8	48.75	ML	28	
402.8	53.75	ML	22	
397.8	58.75	ML	12	
392.8	63.75	ML	9	
387.8	68.75	ML	14	
382.8	73.75	ML	21	
377.8	78.75	ML	50	

<u>SS1-1</u>

Elevation	Depth	Soil class	N-field	Remarks
502.3	3.25	CL	17	Not liquefiable
497.3	8.25	CL	12	Embankment
492.3	13.25	CL	17	as layer is
487.3	18.25	CL	15	above ground
482.3	23.25	CL-ML	17	water
477.3	28.25	CL	15	
472.3	33.25	CL	21	
467.3	38.25	CL	23	
462.3	43.25	ML	30	
457.3	48.25	ML	24	Evaluated for
452.3	53.25	CL	23	liquefaction
447.3	58.25	CL	35	
442.3	63.25	CL	27	
437.3	68.25	SC	8	
432.3	73.25	CL	20	
427.3	78.25	CL	24	
422.3	83.25	CL	30	
417.3	88.25	SC	46	

SS2-1

Elevation	Depth	Soil class	N-field	Remarks
500.7	3.75	CL	10	Not liquefiable.
495.7	8.75	CL	12	
490.7	13.75	CL	13	Embankment
485.7	18.75	CL-ML	26	and located
480.7	23.75	CL	14	above ground
475.7	28.75	CL	17	water
470.7	33.75	CL	24	
465.7	38.75	CL	25	
460.7	43.75	CL	13	
455.7	48.75	CL	14	Evaluated for
450.7	53.75	CL	24	liquefaction
445.7	58.75	CL	26	
440.7	63.75	ML	26	
435.7	68.75	CL	13	
430.7	73.75	SM	12	
425.7	78.75	SM	43	
420.7	83.75	SM	28	
415.7	88.75	CL	22	
410.7	93.75	CL	29	

<u>SS2-4</u>

Elevation	Depth	Soil class N-field		Remarks
436.6	3.25	CL	13	Evaluated for
431.6	8.25	CL	12	liquefaction
426.6	13.25	CL	8	
421.6	18.25	SM	12	
416.6	23.25	CL	6	
411.6	28.25	CL	17	
406.6	33.25	CL	17	
401.6	38.25	CL	15	
396.6	43.25	CL	11	
391.6	48.25	CL	12	
386.6	53.25	CL	13	
381.6	58.25	CL	19	
376.6	63.25	GC	22	

<u>SS3-1</u>

Elevation	Depth	Soil class	N-field	Remarks	
501.2	3.25	CL	11	Not liquefiable.	
496.2	8.25	CL-ML	12		
491.2	13.25	CL	22	Embankment	
486.2	18.25	ML	17	and located	
481.2	23.25	CL	22	above ground water	
476.2	28.25	SC	27	Evaluated for	
471.2	33.25	CL	10	liquefaction	
466.2	38.25	ML	15		
461.2	43.25	ML	22		
456.2	48.25	SP	24		
451.2	53.25	SC	33		
446.2	58.25	SP	17		
441.2	63.25	SP	20		
436.2	68.25	SM	25		
431.2	73.25	SP	14		
426.2	78.25	SP	37		
421.2	83.25	SP	28		
416.2	88.25	SM	29		
411.2	93.25	SM	28		
406.2	98.25	CL	29		

SS3-4

Elevation	Depth	Soil class	N-field	Remarks
448.1	3.75	CL	10	Not liquefiable,
443.1	8.75	CL	11	above ground water
438.1	13.75	SM	5	Evaluated for
433.1	18.75	SM	7	liquefaction
428.1	23.75	SC	2	
423.1	28.75	ML	11	
418.1	33.75	ML	9	
413.1	38.75	CL	2	
408.1	43.75	CL	19	
403.1	48.75	CL	22	
398.1	53.75	CL	15	
393.1	58.75	CL	16	
388.1	63.75	CL	19	
383.1	68.75	CL	21	
378.1	73.75	CL	20	
373.1	78.75	CL	34	

<u>SS4-1</u>

Elevation	Depth	Soil class	N-field	Remarks	
502.4	3.25	CL	5	Not liquefiable.	
497.4	8.25	ML	23		
492.4	13.25	CL	13	Embankment	
487.4	18.25	CL	24	and above	
482.4	23.25	CL	17	ground water	
477.4	28.25	CL	19		
472.4	33.25	CL	20		
467.4	38.25	CL	16	Evaluated for	
462.4	43.25	ML	17	liquefaction	
457.4	48.25	SM	11		
452.4	53.25	SM	23		
447.4	58.25	SM	18		
442.4	63.25	SM	24		
437.4	68.25	CL	26		
432.4	73.25	SC	5		
427.4	78.25	ML	22		
422.4	83.25	ML	29		
417.4	88.25	ML	30		
412.4	93.25	ML	30		

<u>SS4-4</u>

Elevation	Depth	Soil class	N-field	Remarks
447.0	3.75	CL	13	Not liquefiable,
442.0	8.75	CL	7	above ground water
437.0	13.75	SM	2	Evaluated for
432.0	18.75	CL	4	liquefaction
427.0	23.75	GC	50	
422.0	28.75	GC	29	

<u>SS5-1</u>

Elevation	Depth	Soil class	N-field	Remarks
501.6	3.25	CL	8	Not liquefiable,
496.6	8.25	CL	20	Embankment
491.6	13.25	CL	20	and above
486.6	18.25	SC	22	ground water
481.6	23.25	SM	25	
476.6	28.25	SM	50	N-values more
471.6	33.25	SM	50	than 30.
466.6	38.25	SM	50	

7.2-3

TABLE 1
Typical Properties of Compacted Soils

					l Value of pression	Typi	cal Strength	Characterist	ics			
Group Symbol	Soil Type	Range of Heximum Dry Unit Weight, pcf	Range of Optimes Moisture, Percent		At 3.6 tsf (50 psf) of Original	Cohesion (as com- pacted) paf	Cohesion (saturated) paf	(Effective Stress Envelope Degrees)	Tan #	Typics1 Coefficient of Permea- bility ft,/min,	Range of CBR Values	Range of Subgrade Modulus k 1bs/cu in.
CN	Well graded clean gravels, gravel-sand mixtures.	125 - 135	11 - 8	0,3	0.6	O.	0	>38	>0.79	5 x 10 ⁻²	40 ~ 80	300 - 500
GP	Poorly graded clean gravels, gravel-sand mix	115 - 125	14 - 11	0.4	0,9	o	0	>37	>0.74	10+1	30 ~ 60	250 - 400
GH	Silty gravels, poorly graded gravel-sand-silt.	120 - 135	13 – 8	Q.5	1•1		*****	>34	>0.67	>10 -6	20 - 60	100 - 400
GC	Clayey gravels, poorly graded gravel-sand-clay.	115 - 130	14 - 9	0.7	1,6			>31	>0.60	>10-7	20 - 40	1 00 - 300
ŝwi	Well graded clean mends, gravelly equip.	110 - 130	16 - 9	0_6	1.2	0	0	38	0.79	>10-3	20 - 40	200 - 300
SP	Footly graded clean sands, sand-gravel mix.	100 - 320	21 - 12	0.9	1.4	0	Đ	37	0.74	>10=3	10 - 40	200 - 300
BM	Silty ends, poorly graded sand-wilt wir.	110 - 125	16 - 11	0,8	1.6	1050	420	34	0.67	5 x >10~5	10 - 40	100 - 300
SH-SC	Sand-silt clay mix with slightly plastic fines.	110 - 130	15 - 11	0.8	1.4	1050	300	33	0.66	2 ≰>10−6	5 - 30	100 - 300
sc	Clayey sands, poorly graded sand-clay-mix.	105 + 125	19 - 11	1.1	2.2	1550	230	31	0,60	5 x >10 ⁻⁷	5 - 20	100 - 300
ЮL	Inorganic silts and clayey silts.	95 - 120	24 - 12	9,0	1.7	1400	190	32	0.62	>10-5	15 or less	100 - 200
MIL-CL	Mixture of inorganic ailt and clay.	100 - 120	22 - 12	1.0	2.2	1350	460	3z	D. 62	5 k >10 ⁻⁷		
c1,	Inorganic clays of low to medium plasticity.	95 - 120	24 - 12	1.3	2.5	1800	270	28	0.54	>10-7	15 or less	50 - 200
0L	Organic silts and silt- clays, low plasticity.	90 ~ 100	33 - 21	••••	.,			····		••••	5 or less	50 - 100
MOL	Inorganic clayey siltm, elastic milts.	70 - 95	40 - 24	2.0	3.8	1500	420	25	0.47	5 x >10 ⁻⁷	10 or less	50 - 100
CHE	Inorganic clays of high plasticity	75 - 105	36 - 19	2,6	3.9	2150	230	19	0,35	>10 ⁻⁷	15 or less	50 - 150
OH	Organic clays and silty clays	65 - 100	45 - 21					****			5 or less	25 - 100

Notes:

- All properties are for condition of "Standard Proctor" maximum density, except values of k and CSR which are for "modified Proctor" maximum density.
- Typical stength characteristics are for effective strength envelopes and are obtained from USSR data.
- Compression values are for vertical leading with complete lateral confinement.
- (>) indicates that typical property is greater than the value shown.
 (...) indicates insufficient data available for an estimate.

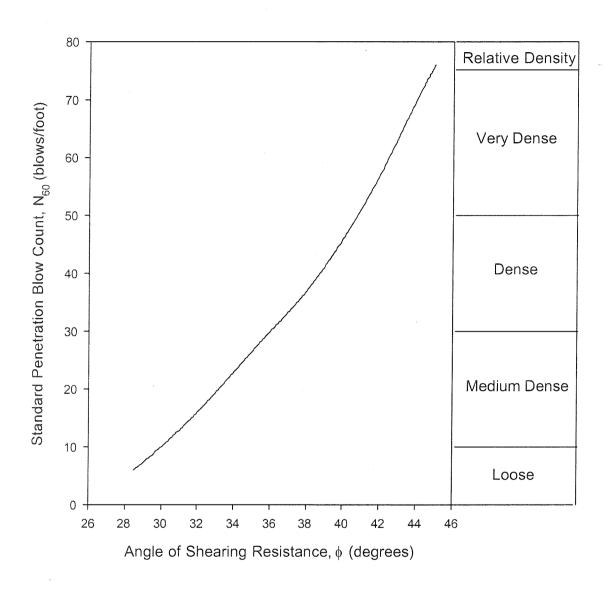


Figure 35. Estimation of the angle of shearing resistance of granular soils from standard penetration test results (Originally from Peck et al., 1974, modified by Carter and Bentley, 1991).

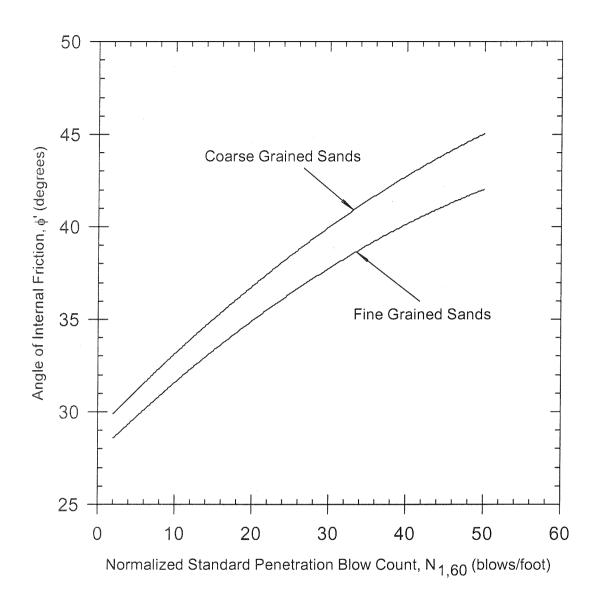
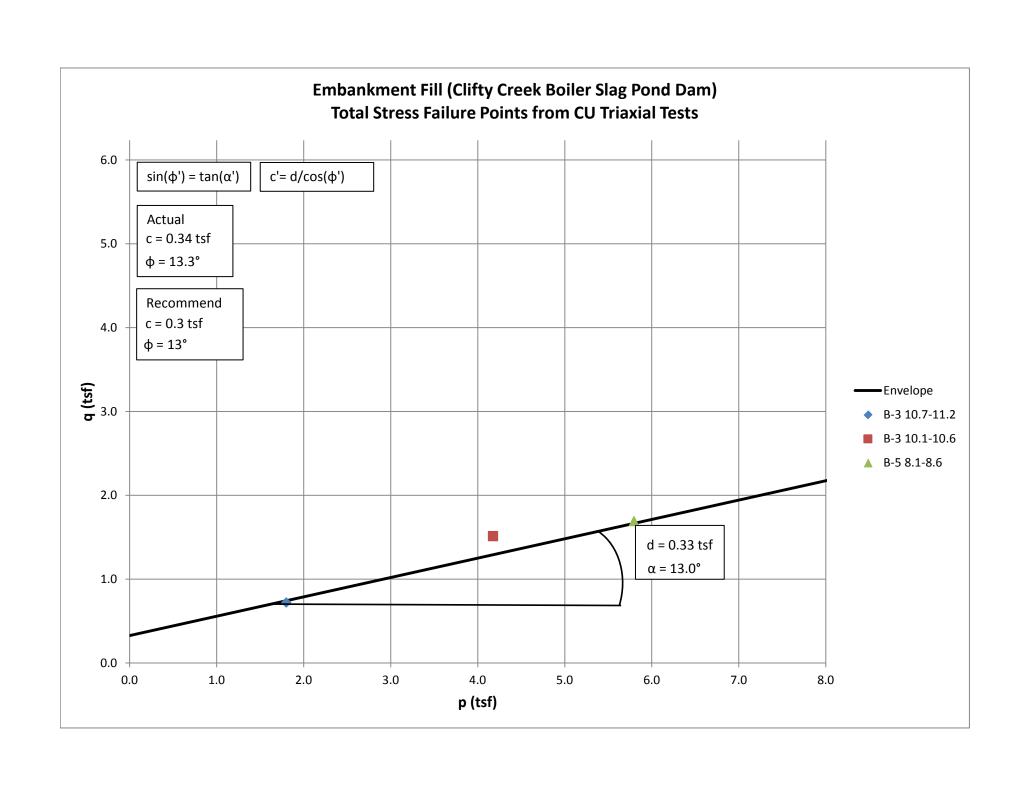
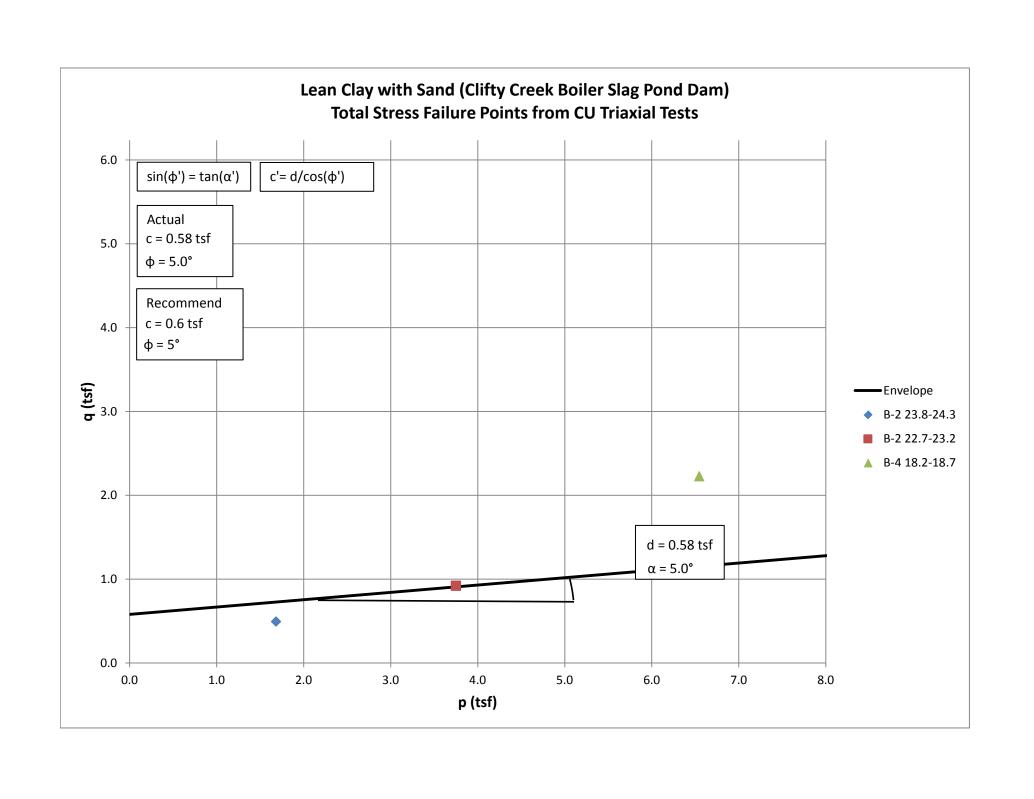




Figure 34. Empirical correlation between friction angle of sands and normalized standard penetration blow count (after Terzaghi et al., 1996)

UNDRAINED CALCULATIONS: BOILER SLAG POND DAM

PLANT: CLIFTY CREEK
FACILITY: BOILER SLAG POND DAM

 MATERIAL: EMO	BANKMENT FILL				
σ, -σ3 (plat) (pse)	σ ₃ ' (105 request) (psi)	σί' (psi)	u(plot) (psi)	(051)	σ ₃ (psi)
20	/6	30	5	35	15
42	20	62	17	79	37
47	30	77	27	104	57
MATERIAL & LEAR	, CLAY W SAND				
0,'-03' (plot) (psi)	oz'(los reguest) (psi)	(05:)	u(plot) (psi)	σ, (ρs:)	953 (psi)
14	. 10	24	NOTE OF THE PROPERTY OF THE PR	31	17
26	20	46	19	65	39
62	30	92	30	122	60

CALCULATED BY: J. SWINDLER

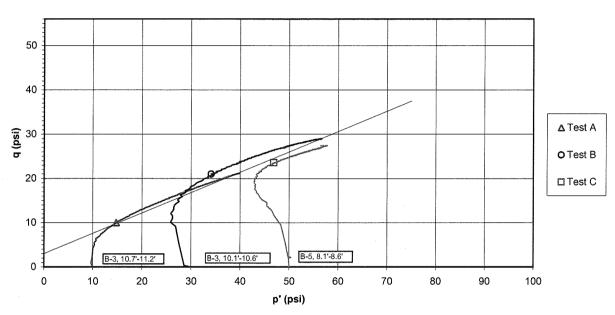
Consolidated Undrained Triaxial Test ASTM D4767-04

Project Sample ID AEP-Clifty Creek-West Bottom and Fly Ash Ponds subsurface exploration

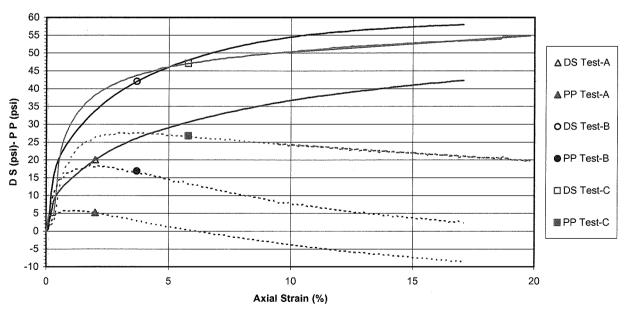
B-3, 10.7'-11.2' & B-3, 10.1'-10.6' & B-5, 8.1'-8.6'

Project No.

175539022


Test Number $\phi' = 27.4 \text{ deg.}$

490 psf


Failure Criterion:

Maximum Effective Principal Stress Ratio

p' vs. q Plot

Deviator Stress and Induced Pore Pressure vs. Axial Strain

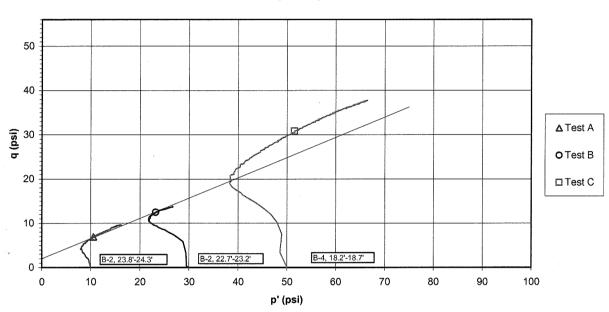
Consolidated Undrained Triaxial Test ASTM D4767-04

Project Sample ID AEP-Clifty Creek-West Bottom Ash and Fly Ash Ponds subsurface exploration

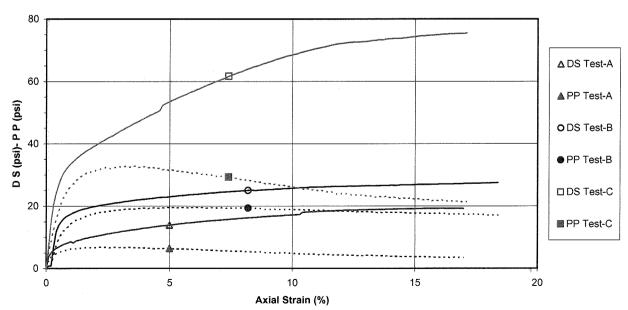
B-2, 23.8'-24.3' & B-2, 22.7'-23.2' & B-4, 18.2'-18.7'

Project No. <u>175539022</u>

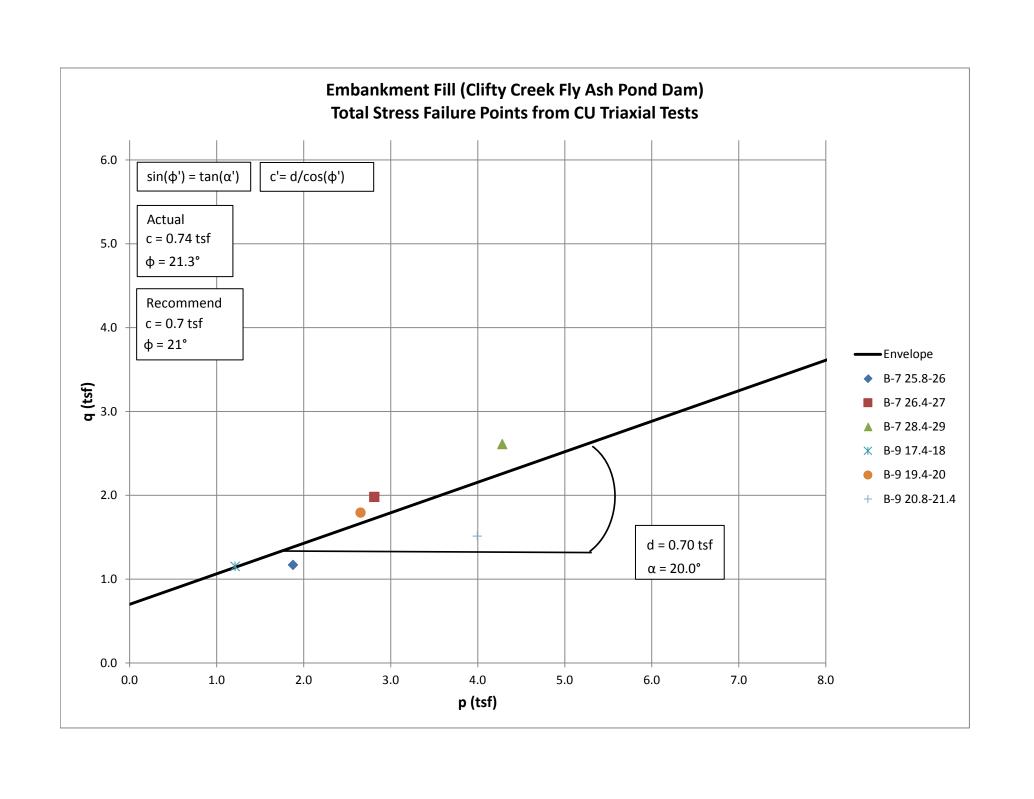
Test Number

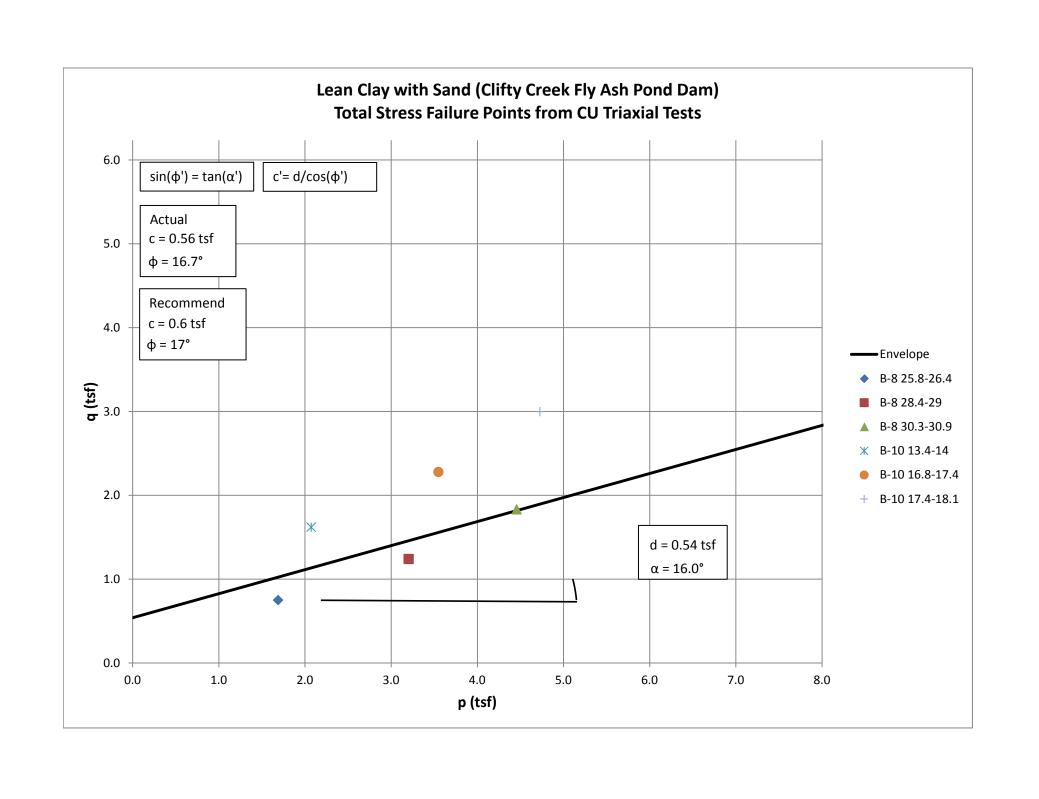

 $\phi' = 27.2 \text{ deg.}$

c' = 320 psf


Failure Criterion:

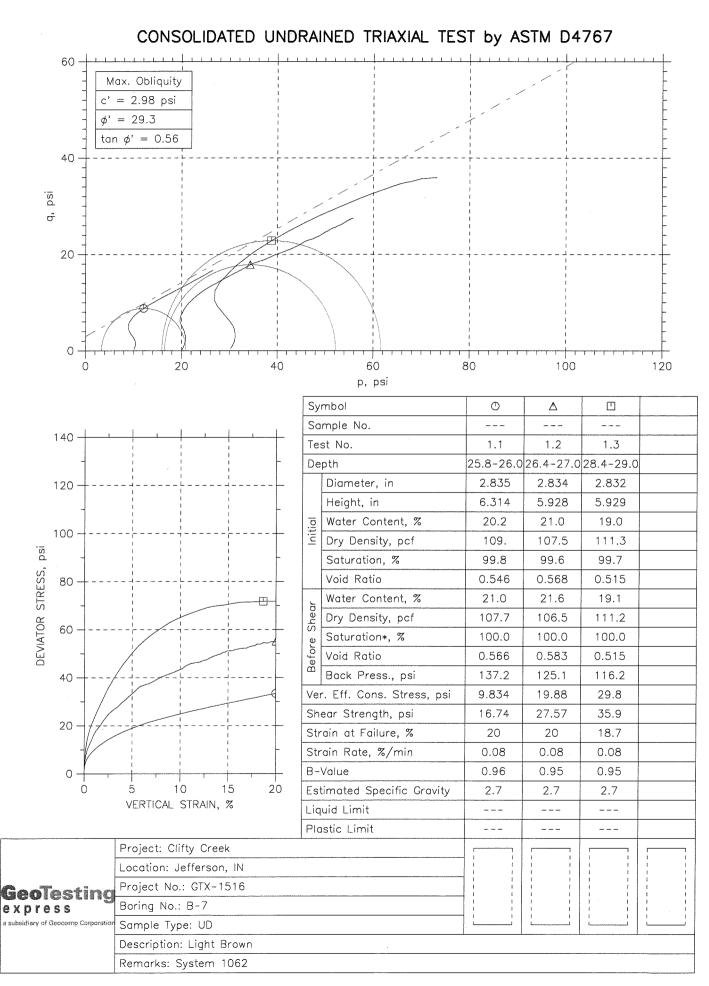
Maximum Effective Principal Stress Ratio

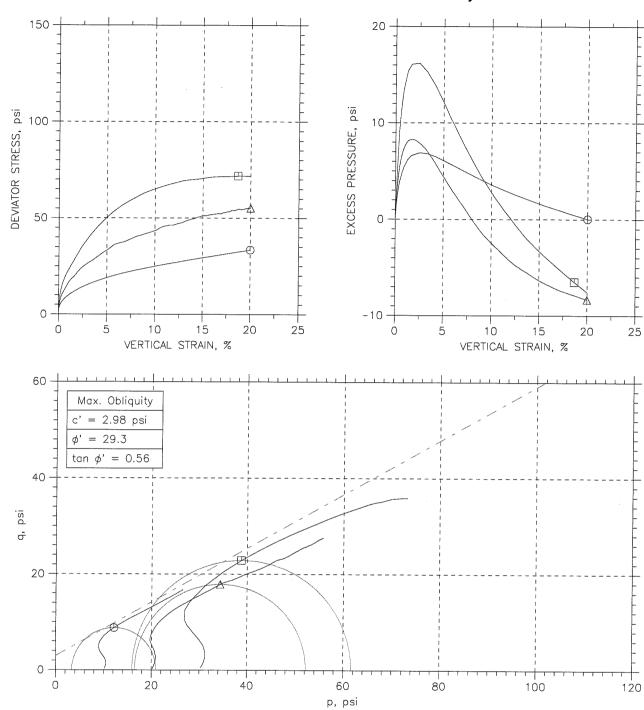

p' vs. q Plot



Deviator Stress and Induced Pore Pressure vs. Axial Strain

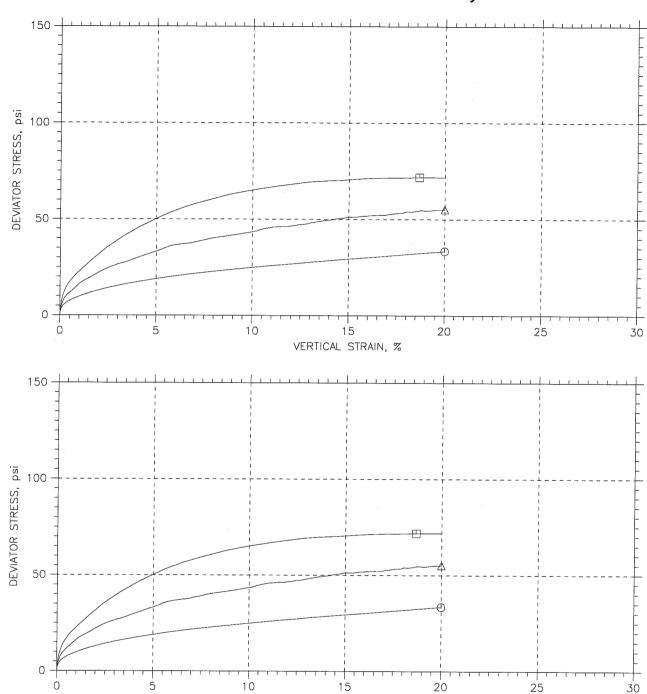
UNDRAINED CALCULATIONS: LANDFILL RUNOFF COLLECTION POND


PLANT: CLIFTY CREEK FACILITY: LANDFILL RUNOFF COLLECTION POND


MATE	RIAL	1	EN	1BAA	JILM	ENT
,			Page 1	a tilla h é.		- 46a.

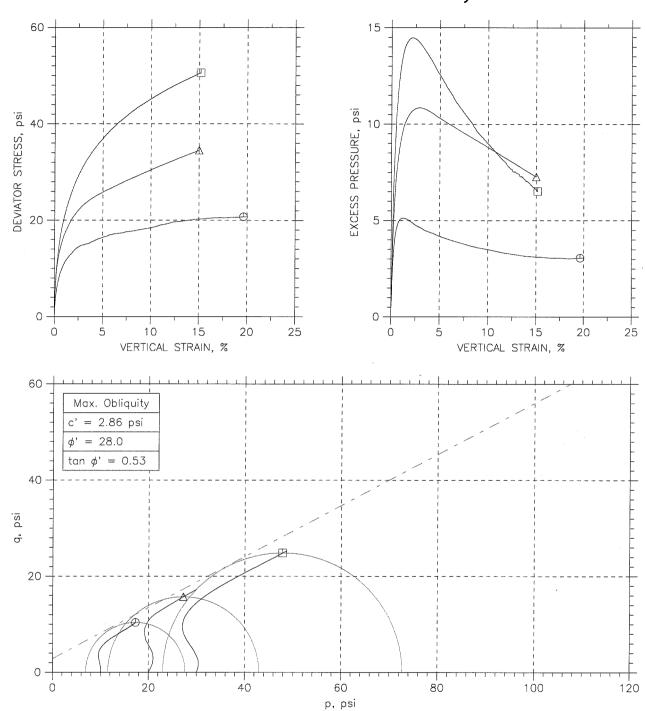
	0,1-02 (plot)	on (toble)	0,	u(plot)	O,	03
:	(ps:)	<u> (psi)</u>	(ps:)	(1/51)	(ps:)	(ps:)
8-7	32.50	9.83	42.33	0.00	42.33	9.83
8-7	55.00	19.88	74,98	-8.33	66.55	11.55
6-7	72.50	29.80	102.30	-657	95.73	23.23
B-9	32.00	10.00	42.00	-9,15	32.85	0,85
B-9	49.81	19.96	69.77	-6.00	61.77	11.96
B-9	42.00	29.89	71.85	4.62	76.50	34,50

MATERIAL! LEAN CLAY WITH SAND


	0, '-03'(plot)	03' (tesue)	, O', '	(felq)N	01	03
	(psi)	(psi)	(ps;)	(p's:)	$(\rho s:]$	(psi)
					· · · · · · · · · · · · · · · · · · ·	
B-8	20.84	9.97	301.91	3.05	33,186	13.02
B-8	34.42	19,98	54.42	7.30	61.72	27.28
B-8	50.83	29.96	8084	6,50	8734	36.46
B-10	45.00	10.00	55.00	-3.72	51,28	6,28
B-10	63.26	19,99	83.25	-2.33	30,9Z	17.66
3-10	83.26	30.00	113.26	-6.00	107.26	24.00

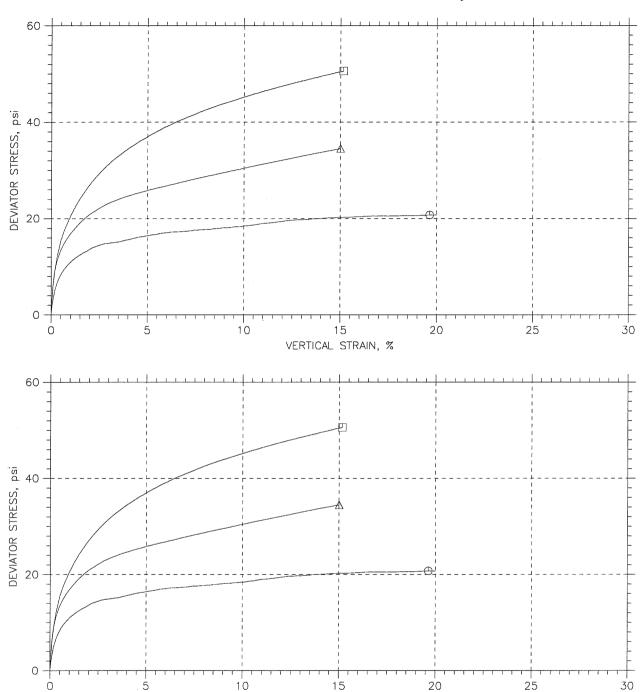
	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0		1.1	25.8-26.0	jm	12/10/09	mm		1516-1.1.dat
Δ		1.2	26.4-27.0	jm	12/10/09	mm		1516-1.2.dat
		1.3	28.4-29.0	jm	12/9/09	mm		1516-1.3.dat

Gentastino	Project: Clifty Creek	Location: Jefferson, IN	Project No.: GTX-1516
express	Boring No.: B-7	Sample Type: UD	
a subsidiary of Geocomp Corporation	Description: Light Brown		
	Remarks: System 1062		



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Φ		1.1	25.8-26.0	jm	12/10/09	mm		1516-1.1.dat
Δ		1.2	26.4-27.0	jm	12/10/09	mm		1516-1.2.dat
		1.3	28.4-29.0	jm	12/9/09	mm		1516-1.3.dat

VERTICAL STRAIN, %

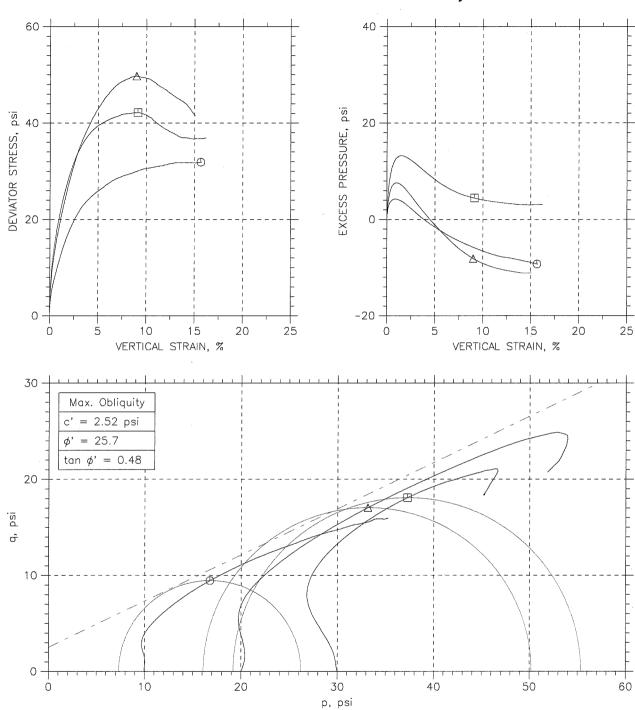

- Take	Geniestinn	Project: Clifty Creek	Location: Jefferson, IN	Project No.: GTX-1516			
	express	Boring No.: B-7	Sample Type: UD				
	subsidiary of Geocomp Corporation	Description: Light Brown					
Remarks: System 1062							

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767 Max. Obliquity c' = 2.86 psi $\phi' = 28.0$ $tan \phi' = 0.53$ psi ô 20 20 40 60 80 100 120 p, psi Symbol Δ Sample No. 70 Test No. 2.1 2.3 2.2 Depth 25.8-26.4 28.4-29.0 30.3-30.9 Diameter, in 2.82 2.824 2.838 60 Height, in 5.82 6.027 6.001 Water Content, % 21.0 20.9 20.7 50 Dry Density, pcf 107.2 107.6 107.6 Saturation, % 99.2 98.7 99.6 DEVIATOR STRESS, Void Ratio 0.572 0.567 0.567 40 Water Content, % 20.5 19.8 19.0 Shear Dry Density, pcf 108.5 109.8 111.4 30 Saturation*, % 100.0 100.0 100.0 Before Void Ratio 0.554 0.535 0.513 Back Press., psi 59.25 124.8 56.31 20 Ver. Eff. Cons. Stress, psi 9.968 19.98 29.96 Shear Strength, psi 10.37 17.25 25.3 10 Strain at Failure, % 19.6 15 15.2 Strain Rate, %/min 0.016 0.016 0.016 B-Value 0.95 0.96 0 0.95 0 10 15 20 Estimated Specific Gravity 2.7 2.7 2.7 VERTICAL STRAIN, % Liquid Limit ___ Plastic Limit Project: Clifty Creek Location: Jefferson, IN. Project No.: GTX-1516 **Geo**lestind Boring No.: B-8 express Sample Type: UD Description: Greenish brown lean clay with sand Remarks: 2054

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0		2.1	25.8-26.4	jm	12/11/09	mm		1516-2.1.dat
Δ		2.2	28.4-29.0	jm	12/11/09	mm		1516-2.2A.dat
		2.3	30.3-30.9	jm	12/09/09	mm		1516-2.3.dat

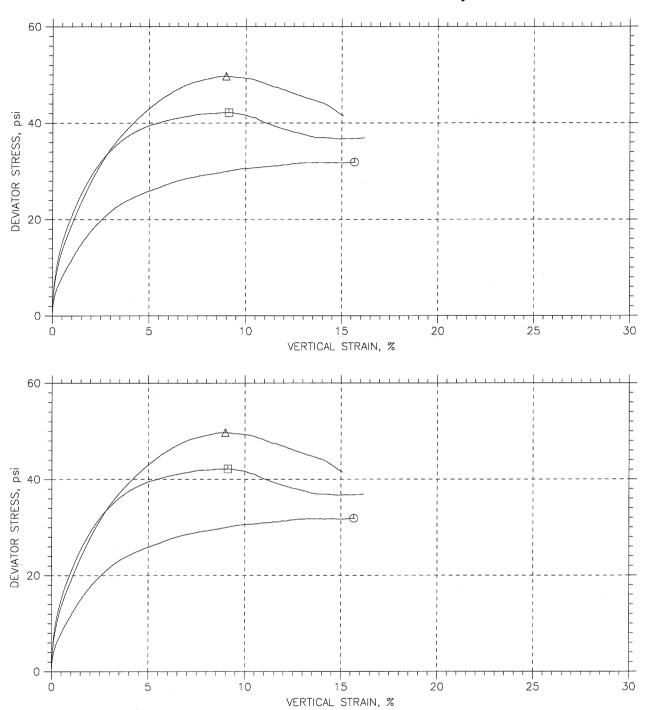
Gantastino	Project: Clifty Creek	Location: Jefferson, IN.	Project No.: GTX-1516					
express	Boring No.: B-8	Sample Type: UD						
a subsidiery of Geocomp Corporation	Description: Greenish brown lean	clay with sand						
	Remarks: 2054							

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0		2.1	25.8-26.4	jm	12/11/09	mm		1516-2.1.dat
Δ		2.2	28.4-29.0	jm	12/11/09	mm		1516-2.2A.dat
		2.3	30.3-30.9	jm	12/09/09	mm		1516-2.3.dat
		-						


VERTICAL STRAIN, %

	Gen Testina	Project: Clifty Creek	Location: Jefferson, IN.	Project No.: GTX-1516			
	express	Boring No.: B-8	Sample Type: UD				
-	a subsidiery of Geocomp Corporation	Description: Greenish brown lean clay with sand					
Remarks: 2054							

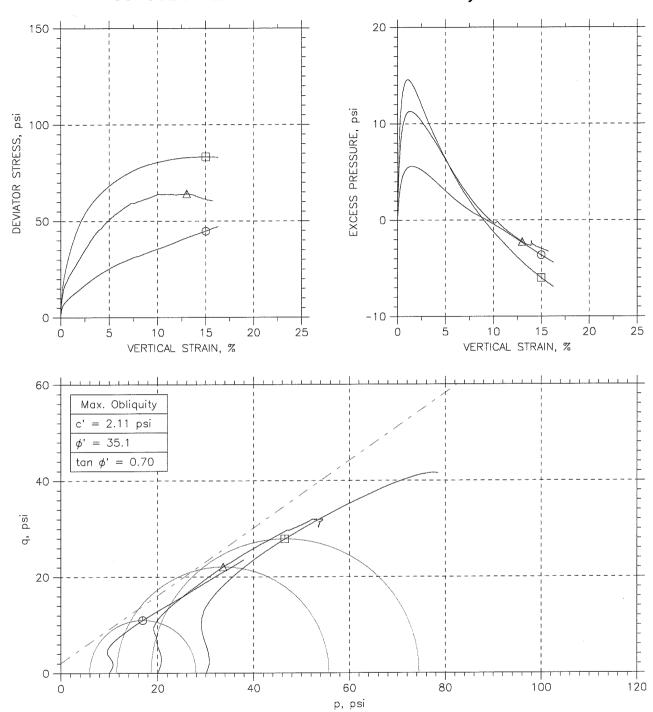
CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767 Max. Obliquity c' = 2.52 psi $\phi' = 25.7$ $\tan \phi' = 0.48$ 20 psi ó 10 0 10 20 50 60 30 40 p, psi Symbol Δ Sample No. 70 3.1 3.2 3.3 Test No. Depth 17.4-18.0 19.4-20.020.8--21. Diameter, in 2.835 2.835 2.837 60 6.281 6.319 6.177 Height, in Water Content, % 19.4 18.4 20.8 50 Dry Density, pcf 111.4 107.3 109.7 psi 96.9 98.6 Saturation, % 97.8 DEVIATOR STRESS, Void Ratio 0.536 0.514 0.571 40 Water Content, % 22.7 19.2 18.9 Shear Dry Density, pcf 111.7 104.5 111. 30 100.0 100.0 Saturation*, % 100.0 Void Ratio 0.518 0.509 0.613 122 116.2 Back Press., psi 136.8 20 Ver. Eff. Cons. Stress, psi 9.997 19.96 29.88 21.08 Shear Strength, psi 15.94 24.86 10 8.98 9.12 Strain at Failure, % 15.7 Strain Rate, %/min 0.016 0.016 0.016 0.95 0.96 B-Value 0.95 0 10 15 20 2.7 2.7 Estimated Specific Gravity 2.7 VERTICAL STRAIN, % Liquid Limit ____ ___ Plastic Limit Project: Clifty Creek Location: Jefferson, IN Project No.: GTX-1516 Boring No.: B-9 express Sample Type: UD


Description: Brown lean clay with sand

Remarks: System 1057

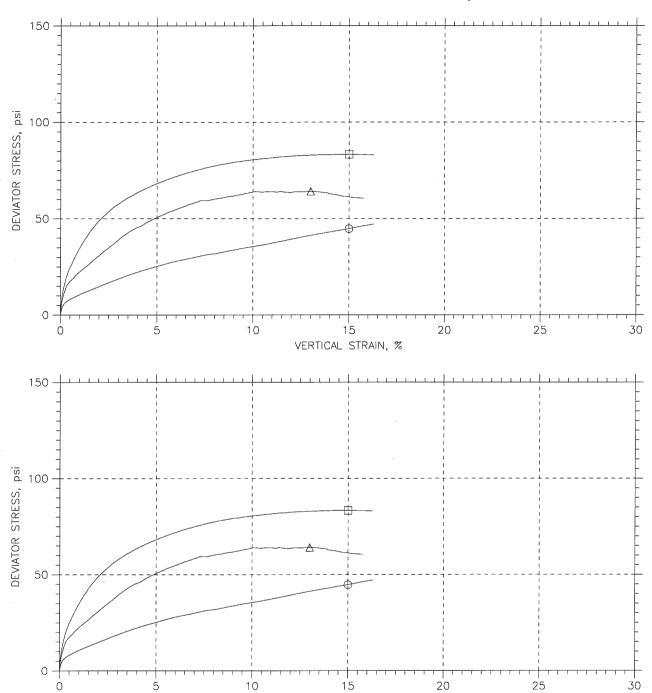
	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0		3.1	17.4-18.0	jm	12/15/09	mm		1516-3.1.dat
Δ		3.2	19.4-20.0	jm	12/16/09	mm		1516-3.2Adat.dat
		3.3	20.821.4	jm	12/10/09	mm		1516-3.3.dat

Geniestina	Project: Clifty Creek	Location: Jefferson, IN	Project No.: GTX-1516				
express	Boring No.: B-9	Sample Type: UD					
a subsidiary of Geocomp Corporation Description: Brown lean clay with sand							
	Remarks: System 1057						



	Checked by	Check Date	Test File
12/15/09	mm		1516-3.1.dat
12/16/09	mm		1516-3.2Adat.dat
12/10/09	mm		1516-3.3.dat
- 1 .	2/10/09	2/10/09 111111	2/10/09 11111

Gantagring	Project: Clifty Creek	Location: Jefferson, IN	Project No.: GTX-1516			
express	Boring No.: B-9	Sample Type: UD				
a subsidiary of Geocomp Corporation	Description: Brown lean clay with sand					
	Remarks: System 1057					


CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767 Max. Obliquity c' = 2.11 psi $\phi' = 35.1$ $tan \phi' = 0.70$ ps. σ̂ 20 120 40 80 100 20 60 p, psi Symbol Φ Δ ____ ____ Sample No. 140 Test No. CU-4.1 CU-4.2 CU-4.3 Depth 3.4-14.0 16.8-17.4 17.4-18.3 2.72 Diameter, in 2.83 2.71 120 5.78 5.51 5.52 Height, in Water Content, % 14.2 27.4 26.6 100 Dry Density, pcf 102.9 93.8 93.72 psi Saturation, % 59.9 93.0 89.9 DEVIATOR STRESS, 0.797 0.798 Void Ratio 0.638 80 19.2 Water Content, % 23.2 18.5 Shear 103.7 112.4 111. Dry Density, pcf 60 100.0 100.0 Saturation*, % 100.0 0.625 0.5 0.519 Void Ratio Back Press., psi 27.99 73 84.99 40 Ver. Eff. Cons. Stress, psi 10 19.99 30 32.06 22.37 41.66 Shear Strength, psi 20 Strain at Failure, % 15 13 15 0.032 0.032 0.032 Strain Rate, %/min 0.96 B-Value 0.95 0.95 10 15 20 Estimated Specific Gravity 2.7 2.7 2.7 VERTICAL STRAIN, % Liquid Limit ___ _ - -___ Plastic Limit Project: Clifty Creek Location: ----Project No.: GTX-1516 Geollestin Boring No.: B-10 express Sample Type: UD Description:

Remarks: 2054

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0		CU-4.1	13.4-14.0'	JM	12/12/09	ММ		1516-4.1.dat
Δ		CU-4.2	16.8-17.4	JM	12/13/09	ММ		1516-4.2.dat
		CU-4.3	17.4-18.	JM	12/12/09	ММ		1516-4.3.dat

	Project: Clifty Creek	Location:	Project No.: GTX-1516			
express	Boring No.: B-10	Sample Type: UD				
a subsidiary of Geocomp Corporatio	Description:					
	Remarks: 2054					

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0		CU-4.1	13.4-14.0'	JM	12/12/09	ММ		1516-4.1.dat
Δ		CU-4.2	16.8-17.4'	JM	12/13/09	ММ		1516-4.2.dat
		CU-4.3	17.4-18.	JM	12/12/09	ММ		1516-4.3.dat

VERTICAL STRAIN, %

Geolestin express	19	
a subsidiery of Geocomp Corpor	ation	

1	Project: Clifty Creek	Location:	Project No.: GTX-1516				
	Boring No.: B-10	Sample Type: UD					
317	Description:						
	Remarks: 2054						